Конденсационная сушилка древесины. Выбор сушильной камеры — так ли просто? Вам будет интересно

Защита и отделка

Наши заказчики отдают предпочтение простым, надежным и максимально эффективным технологиям сушки, которые позволяют получить высококачественный свободный от внутренних напряжений сухой материал, при минимальных затратах на обслуживание камер в процессе работы.

Обезвоживатели или системы с тепловым насосом

Строго говоря, это обыкновенная конвективная сушилка, закольцованная через холодильник, на котором и конденсируется влага. Это проводит к тому, что мы не "отапливаем" атмосферу, а используем все тепло, по его прямому назначению, для нагрева древесины. Это очень важно в городах, где экологические службы душат производителей всеми доступными им средствами.

К плюсам данного типа оборудования относятся:

  • экологическая чистота
  • отсутствие котельной
  • невысокая энергоемкость, хотя для нагревания используется электричество
  • прекрасные результаты как при сушении хвойных, так и при сушении твердолиственных пород древесины

ПРИМЕРЫ КОМПЛЕКТАЦИИ КОНДЕСАЦИОННЫХ СУШИЛЬНЫХ КАМЕР MAC

Пример 1. КОНДЕНСАЦИОННЫЕ СУШИЛЬНЫЕ КАМЕРЫ ДЛЯ ДРЕВЕСИНЫ С ТУННЕЛЬНОЙ ЗАГРУЗКОЙ Модель MAC 6/С

ОПИСАНИЕ ОБОРУДОВАНИЯ КОНДЕНСАЦИОННОЙ СУШИЛЬНОЙ КАМЕРЫ

Полезный объемом загрузки 6 м 3 обрезного пиломатериала толщиной 25 мм.

Габаритные размеры:

А (ширина) =2000 мм., В = 6300 (длина) мм., С=1500 мм., Н= 2200 (высота) мм.

Камеры снабжены загрузочными рельсами, неподвижными внутри камеры и, подвижными снаружи. MAC-6 имеет двойные рельсы. Камеры MAC-6 поставляются в разобранном виде. Корпус камер изготовлен из полиуретановых панелей, облицованных алюминием, толщина панелей60 мм. Камеры поставляются с полом, для внутрицеховой установки. Для циркуляции воздуха в камерах используется центробежный вентилятор. Управление камерами осуществляется компьютером, управляющего сразу четырьмя камерами. В сушильной камере МАС используется нейтральный газ тетрафлорэтан (R134 a). Электрооборудование моделей МАС реализовано с полным соблюдением норм безопасности ЕС. Кроме того, все кабели внутри камеры изготовлены из высокотемпературного силикона.

1 датчик EMC на каждую

6 зондов для древесины

1 зонд для температуры

Пример 2. КОНДЕНСАЦИОННАЯ СУШИЛЬНАЯ КАМЕРА ДЛЯ ДРЕВЕСИНЫ С ТУННЕЛЬНОЙ ЗАГРУЗКОЙ Модель MAC 15- C

ОПИСАНИЕ ОБОРУДОВАНИЯ

Полезный объемом загрузки 15 м 3 обрезного пиломатериала толщиной 25 мм.

Габаритные размеры:

А=3500 мм., В=6300 мм., С=1500 мм., D=2800 мм., F=6500 мм., Н=2700 мм.,

Х=6400 мм., L=13000 мм., К=2950 мм.

Камеры снабжены загрузочными рельсами, неподвижными внутри камеры и, подвижными снаружи. MAC-15 имеет двойные рельсы. Камеры MAC-15 поставляются в разобранном виде. Корпус камер изготовлен из полиуретановых панелей облицованных алюминием, толщина панелей 60 мм. Камеры поставляются с полом, для внутрицеховой установки. Для циркуляции воздуха в камерах используется центробежный вентилятор. Управление камерами осуществляется компьютером, управляющего сразу четырьмя камерами. В сушильной камере МАС используется нейтральный газ тетрафлорэтан (R134 a). Электрооборудование моделей МАС реализовано с полным соблюдением норм безопасности ЕС. Кроме того, все кабели внутри камеры изготовлены из высокотемпературного силикона.

1 датчик EMC на каждую

6 зондов для древесины

1 зонд для температуры

1 комплект тефлоновых кабелей со штепселями и нержавеющими винтами для считывания показаний по содержанию влаги в древесине.

Схема работы камеры

СУШИЛЬНАЯ СПОСОБНОСТЬ

Размер штабеля1,2 mx1,2 m

Длина доски/штабеля: 6,0…6,2 m, (используемая длина в расчетах способности6,0 m)

Толщина прокладок между досками -20 mm

Толщина доски под штабелями100 mm

Сортамент: обрезные пиломатериалы толщиной 25-50 мм.

Почему выгодна конденсационная сушка древесины, разобраться несложно. Этот метод приобретает все большую популярность за счет своих очевидных преимуществ.

Особенности конденсационной сушки древесины

Конденсационная производится с помощью конденсации теплого влажного воздуха в холодильной установке. Для осуществления процесса существует специально разработанный агрегат конденсационной сушки (АКС), благодаря которому:

  • при достижении точки росы пар превращается в воду,
  • вода конденсируется на стенках теплообменника,
  • стекает и выводится наружу.

Интенсивная высокопроизводительная сушка досок позволяет выводить до 300 литров воды в сутки. Таким образом, сушка доски обрезной осуществляется в результате подачи и циркуляции теплого воздуха и выведения влаги. В сушильной камере, где установлен агрегат конденсационной сушки, выполняется замкнутый цикл, и сушка досок происходит на основе вторичного тепла, что снижает энергозатратность производственного процесса и увеличивает его КПД.

Преимущества конденсационной сушки древесины

В числе преимуществ, которыми обладает конденсационная сушка древесины, уникальное комплектующее оборудование для сушильных камер , специально разработанное «Ижевским Теплоагрегатным Заводом». Ведущий российский производитель конденсационных сушильных камер гарантирует:

  • оптимальные варианты комплектации импортного и отечественного производителя для сохранения качества и снижения себестоимости продукции,
  • полную аналогию финской конденсационной установки, соответствующей финансовым возможностям российского потребителя,
  • выбор идеальной комплектации и агрегата АКС для установки в мобильные сушильные камеры.

Оборудование для конденсационной сушильной установки

Все оборудование для сушильных камер, в том числе агрегат конденсационной сушки, обладает высоким уровнем надежности и адаптации к российским условиям. В результате его функционирования сушка доски обрезной производится в автоматическом режиме без участия человеческого фактора. Микроклимат в камере поддерживается в соответствии с параметрами и породой древесины. Вся система, в составе которой испаритель, конденсатор и компрессор, максимально проста в обслуживании и эксплуатации.

Удаление влаги из воздуха происходит методом конденсации ее на поверхности испарителя. Для этого часть воздуха, циркулирующего в камере, пропускается через сушильный агрегат. Влага теплого воздуха, который заполняет камеру, достигает точки "росы", конденсируется на ребрах холодного теплообменника, капли стекают в поддон и по мере накопления вода через шланг выводится наружу (в зависимости от типа агрегата, за сутки удаляется от 30 до 300 литров воды) . С теплого стороны теплонасоса в воздух снова подаются в форме вторичного тепла: тепло из системы охлаждения воздуха, энергия, идущая на конденсацию влаги и энергия привода. Высушивания древесины происходит за счет подачи воздуха и тепла (циркуляция теплого воздуха) и путем прямого удаления влаги.

Таким образом, внутри камеры образуется почти полностью замкнутый цикл, и сушки происходит с небольшими энергетическими затратами.

Кроме сушильного агрегата для обеспечения циркуляции воздуха в объеме, необходимом для равномерного просушивания материала, в комплект входят циркуляционные вентиляторы.

Вместо многочисленных приточных и вытяжных люков в конденсационных камерах чаще всего используется один компенсационный устройство - повитрообминна заслонка, которая, например, в летний период, когда работающие машины выделяют больше тепла, чем его расходуется через стенки камеры, позволяет этот излишек удалить, заменив свежим прохладным воздухом.

Управление процессом сушки - автоматическое. Специальные сенсорные датчики системы управления измеряют влагу и температуру воздуха в камере; установлены в древесину в нескольких точках другие датчики измеряют влагу древесины. В зависимости от этих параметров, а также от породы древесины регулируется и поддерживается необходимый микроклимат в камере. Система управления на базе микропроцессоров компактная, проста в обслуживании и надежна в работе.

Для установки комплекта оборудования конденсационного способа сушки помещения камеры можно построить самостоятельно, придерживаясь выданных фирмой "УДГ" рекомендаций в плане размеров, строительных материалов, конструкции стен, ворот. Можно также использовать помещения уже существующих сушильных камер или другие помещения. Главная цель, которую нужно достичь, это обеспечение паронепроникности и корозиестийкости, а также теплоизоляции конструкции.

Начиная с 1993 года, фирма "УДГ" поставила в Украину более 60 комплектов оборудования конденсационного способа сушки. Большинство предприятий строили помещения из местных материалов, некоторые приспосабливали существующие сушильные камеры после соответствующей реконструкции по рекомендациям фирмы "УДГ".

В 2002 году в учебно-техническом центре фирмы начат выпуск оборудования для сушки на базе агрегата производительностью 240 - 300 литров конденсата из воздуха воды в сутки, который рассчитан на объем от 12 до 40 м3 древесины (меньшие объемы соответствуют материалу м " которых, хвойных пород или тонкой заготовкам, а большие объемы - толстым заготовкам твердых лиственных пород. Например, объем древесины сосны толщиной 50 мм, что можно загрузить в камеру с одним сушильным агрегатом, равен 12 м3, а дуба такой же толщины - 33 м3; дуба толщиной 30 мм - 16 м3. Если в камеру установить два или более агрегатов, соответственно во столько же раз увеличивается объем древесины.

Различия между конденсационным и конвективным (повитрообминним) способами сушки.

В обоих случаях сушка происходит в условиях циркуляции воздуха. Для древесины имеет значения, каким образом поддерживается необходимый микроклимат в камере: за счет подвода и подогрева сухого свежего воздуха или за счет исключения влаги с помощью какого-либо холодильного агрегата. Главное, чтобы обеспечивался тот режим, который для древесины является наиболее умеренным, без лишних напряжений.

Поскольку в конденсационных сушилках используются холодильные агрегаты, существует верхний предел для температуры в камере - это +60 Со. При высоких температурах внутри холодильной установки может возникнуть очень высокое давление. Показатель низкотемпературного способа сушки наиболее выгодный для древесины дуба, потому лигнин, который присутствует в этой древесине, разрушается при сушке в среде с высокой температурой.

Сушилки с приточно-вытяжной вентиляцией допускают вследствие более высоких температур, например, до 80 Со, соответственно более высокие скорости движения воздуха, что на 50% и более превышает скорость в конденсационных сушилках, где расчетная скорость циркуляции воздуха 1,5 м / сек. Вследствие малой скорости вентилятора имеют небольшую мощность. Суммарные затраты электроэнергии на сушку составляют лишь 95 - 105 кВт / ч на 1 м3 сосны или 190 - 210 кВт / час на 1м3 дуба за весь период сушки.

При низких температурах и скорости движения воздуха снижается износ стенок камеры и других конструктивных элементов, что позволяет использовать более простые строительные материалы.

Конденсационный способ сушки практически исключает такие дефекты, как внутреннее напряжение, покоробленисть, внешние и внутренние трещины, возникающие вследствие ускоренной сушки.

Изменение цвета древесины, причиной которой зачастую является окислительная реакция, особенно при высоких температурах, усиливается при вентиляционному сушке. Поскольку конденсационный образом происходит в условиях замкнутого процесса, то есть без постоянного доступа кислорода со свежим воздухом, то реакция изменения цвета подавляется.

Влага удаляется из конденсационной сушилки в виде жидкости, и ее количество легко замерить. Это самый простой способ контроля за процессом сушки.

В тех случаях, когда теплоэнергия обходится не очень дешево и есть возможность получать сравнительно дешевую электроэнергию, когда необходимо обеспечить экономное сушки древесины особо твердых лиственных пород, таких как дуб, бук, граб, ясень, экономически оправданным решением будет применение конденсационного способа сушки.

Чтобы добиться высокого качества и срока службы изделий, изготовленных из древесины, нужно использовать для их создания хорошо высушенный материал. Современный рынок предлагает разные виды сушильного оборудования для пиломатериалов, сделать выбор для конкретных условий производства поможет сопоставление основные параметров работы сушилок.

В этой статье мы рассмотрим принцип действия и рабочие характеристики инфракрасной сушилки и конденсационной сушильной камеры и сделаем выводы об эффективности использования подобного оборудования.

Принцип работы

Инфракрасные сушилки высушивают пиломатериалы за счет их прогрева инфракрасными лучами. Отсутствие теплоносителя избавляет от необходимости следить за его рабочими параметрами. Такие сушилки не нуждаются в обустройстве системы вентилирования и наличии сложной автоматики. В них предусмотрена возможность изменения режима сушки исходя из характеристик исходного материала. Качество сушки леса с помощью ИК-сушилок удовлетворяет самым жестким требованиям.

Принцип работы конденсационной сушильной камеры схож с действием традиционной конвективной сушилки. Но воздух, проходящий через калориферы, в этом устройстве в дальнейшем поступает в конденсационную установку. Здесь выведенная из древесины влага накапливается, а отработанный воздух снова отправляется для нагрева.

Хладагентом выступает фреон, влага удаляется из сушильной установки в жидком виде. Ее количество можно измерить, что дает возможность точно определить текущую и итоговую влажность материала и учесть эти данные при автоматизации процесса. В отличие от конвективной сушки данная технология предполагает работу при низких температурах, что исключает появление внутренних напряжений в древесине, коробление и изменение цвета. Конденсационные камеры потребляют только электроэнергию.

Внешний вид


Инфракрасная сушилка - это набор тонких термоактивных кассет, соединенных кабельной разводкой и подключенных к электросети через щит управления.

Конденсационная сушильная камера представляет собой шкаф с основанием в виде пространственной рамы, закрытый утепленными съемными панелями. В состав такого устройства входят: холодильный компрессор и арматура, теплообменная система, испаритель, конденсатор и управляющая автоматика.

Размер и вес

Габаритные размеры и вес являются главным преимуществом ИК-сушилок перед другими видами сушильного оборудования. Каждая термоактивная кассета имеет размер 1230x650x1,5 мм и весит всего 5,7 кг. Набор для сушки 1 м³ древесины со всеми составляющими компонентами весит всего 130 кг, а при транспортировке умещается в багажник легкового автомобиля.

Размеры конденсационных камер достаточно велики, при этом вес только лишь конденсационной установки равен минимум 120 кг.

Автономность работы


ИК-сушилка полностью автономна. Работнику достаточно произвести укладку пиломатериалов в штабель с размещение внутри него термоактивных кассет и запустить процесс сушки. Постоянно следить за работой сушилки нет необходимости. Использовать оборудование можно как в помещении, так и на улице под навесом.

Конденсационные камеры снабжаются управляющей автоматикой также позволяющей свести к минимуму участие человека в процессе сушки пиломатериалов.

Время сушки

Время, требуемое для достижения древесиной влажности 8% (оптимальный показатель для производства мебели) зависит от вида материала и его первоначальной влажности.

С помощью инфракрасного оборудования сосновые доски высыхают за 3-7 суток. Более тонкие и менее влажные доски сохнут быстрее толстых брусков с высоким уровнем влажности.

Из-за невысокой температуры внутри конденсационных камер процесс сушки длится в 2-2,5 раза дольше, чем в привычных конвективных установках. Так, для высушивания 40-миллиметровой сосновой доски потребуется 9 суток, 50-миллиметровой - 12 суток, а 70-миллиметровой - 18 суток.

Источник питания

Инфракрасные сушилки подключаются к бытовой электросети 220 В.

Агрегат конденсационной сушки требует только подключения к трехфазной сети напряжением 380 В.

Мощность и потребление электроэнергии

Максимальная мощность ИК-сушилки - 3,3 кВт/м³. Потребление электроэнергии за весь период сушки 1 м³ пиломатериалов - 100-400 кВт*ч.

Энергозатраты на сушку сосны в кондиционной камере составляют 140 кВт*ч/м³.

Цена


Цена - это значимый показатель при выборе оборудования. Стоимость ИК-сушилок :

  • комплект для сушки кубометра трехметровой доски - 59 288 рублей;
  • комплект для сушки кубометра четырехметровой доски - 69 329 рублей;
  • комплект для сушки кубометра шестиметровой доски - 70 007 рублей.

Цены на разные виды конденсационных камер существенно отличаются и составляют от 250 000 до 1 000 000 рублей.

Выводы

Инфракрасные установки обладают массой достоинств: они компактны, экономичны и недороги. Термоактивные кассеты можно использовать для сушки единичных заготовок и большого объема пиломатериалов. Они легко монтируются, быстро разбираются и при необходимости могут быть перевезены в другое место без привлечения спецтехники.

Конденсационные камеры экономно потребляют электроэнергию, благодаря свойствам фреона, позволяющего использовать низкотемпературные режимы сушки. Но процесс сушки в них длится дольше, чем при применении инфракрасного оборудования. К тому же использование фреона и сложные настройки оборудования обуславливают высокие эксплуатационные расходы. Применять конденсационные камеры целесообразно для сушки лесоматериала большого сечения, ценных пород древесины и трудносохнущих сортиментов.

Все способы профессиональной сушки древесины - конвективная, атмосферная, вакуумная, СВЧ, камерная. Сушка древесины конденсационным способом и сушка древесины инфракрасным способом .

Выбор способа сушки древесины и сушильного оборудования определяется рядом факторов: породным и сортиментным составом высушиваемых пиломатериалов, стоимостью энергоносителя, необходимой производительностью, производственными условиями и инвестиционными возможностями потребителя. То есть, если раньше при стабильных ценах для технико-экономического обоснования проекта достаточно было двух-трёх обобщающих факторов, то сегодня нужен расчёт в каждом конкретном случае.

В настоящее время результаты изучения рынка сушильных камер показывают, что среди предлагаемых камер 90-95% - классического типа: конвективные с различными системами приточно-вытяжной вентиляции и видами теплоносителя. Их преимущества: малые капитальные затраты, простота процесса, удобства технического обслуживания.

Основными элементами таких сушилок являются: циркуляционное оборудование (вентиляторы), система нагрева (калориферы), система управления (регуляторы).

Вентиляторы должны обеспечивать необходимую скорость и равномерность распределения сушильного агента по материалу для различных пород с целью получения высшего качества и оптимальной продолжительности процесса сушки древесины. Для побуждения циркуляции сушильного агента используют осевые и, в отдельных случаях при большом сопротивлении, центробежные вентиляторы. К этому оборудованию должны предъявляться жёсткие требования по его надёжности при эксплуатации в среде с высокими температурой и влажностью.

Сушка древесины - длительный и энергоёмкий процесс. Тепловая энергия для сушилок вырабатывается в котельных. Тепловым носителем здесь является пар или горячая вода. Электроэнергию вследствие её дороговизны используют редко, хотя в последнее время этот вид энергоносителя становится всё популярнее.

За рубежом для выработки тепловой энергии в основном используют установки для сжигания древесных отходов (опилок, щепы, коры, стружки).

Параметры среды в сушильных камерах, как правило, измеряют психрометром. Управление и регулирование осуществляется автоматически.

Наряду с традиционными конвективными камерами определённое распространение получили вакуумные и конденсационные сушилки.

Вакуумные сушилки целесообразно использовать для сушки древесины твёрдых лиственных пород (дуб), крупных сечений (50 мм и более), когда скорость сушки является важным фактором. При покупке таких камер нельзя забывать о больших капитальных вложениях.

Конденсационные сушилки используют в тех случаях, когда электроэнергия как энергоноситель более дешёвая по сравнению с другими видами. КПД таких сушилок наиболее высок при температуре сушильного агента до 45°С. При этих параметрах себестоимость небольшая, зато срок сушки значительный.

В последнее время произошли значительные изменения в организации, технике и технологии сушки древесины. Если раньше основной объём сушки древесины приходился на крупные деревообрабатывающие и лесопильные предприятия, где сооружались большие сушильные цеха, то сейчас основная масса древесины перерабатывается на малых предприятиях, потребность которых может быть обеспечена одной-двумя камерами небольшой загрузочной ёмкости. Многие малые компании пытаются реконструировать устаревшие камеры или даже создают самодельные простейшие сушильные устройства, которые не могут обеспечить качественной сушки материала. Вместе с тем, рынок предъявляет всё более жёсткие требования к качеству изделий из древесины.

Низкое качество сушки древесины, обусловленное неудовлетворительным техническим состоянием сушилок и слабой технологической подготовкой обслуживающего персонала, приводит к скрытому браку - неравномерному распределению конечной влажности, который долгое время может оставаться незамеченным и сказаться тогда, когда изделие уже находится в эксплуатации.

Современные лесосушильные камеры как отечественного, так и зарубежного производства позволяют достичь высокого качества сушки древесины. Они оснащены системой автоматического управления процессом и являются сложным комплексом оборудования, требующим квалифицированного обслуживания.

Атмосферная сушка

Атмосферная сушка является наиболее доступным способом обезвоживания древесины. Известно, что атмосферно высушенная древесина может эксплуатироваться многие столетия, если её повторно не увлажнять.

Атмосферная сушка является наиболее дешёвым способом, и раньше она была основной на лесопильных предприятиях. Она не требует таких капитальных затрат, как камерная, но для неё нужны большие площади и большой запас материала.

Основным недостатком атмосферной сушки является то, что процесс неуправляем: в районах с повышенной влажностью воздуха повышается вероятность поражения пиломатериалов грибами, а на юге (от сильной жары) - растрескивания.

Разложение древесины грибами происходит при её влажности выше 22%, и это граничное значение (22%) считается «пределом биостойкости».

Правила атмосферной сушки и хранения пиломатериалов регламентированы государственными стандартами: для пиломатериалов хвойных пород - ГОСТ 3808.1-80; для пиломатериалов лиственных пород - ГОСТ 7319-80.

По правилам, атмосферная сушка проводится в штабелях, укладываемых на специальных фундаментах (высотой 550 мм при грунтовом покрытии или 200 мм при бетонном или асфальтном покрытии подштабельной территории, если высота снежного покрова обычно не превышает 250 мм). Фундамент выполнятся, как правило, из железобетонных опор площадью не менее 400х400 мм. Можно использовать деревянные опоры, предварительно пропитав их антисептическим составом. Расстояние между центрами опор должно быть 1,0-1,7 м по длине и 1,3-1,4 м по ширине штабеля.

Состояние сушильного агента (воздуха) нестабильно, на него оказывают влияние климатические условия, время года и суток. В результате взаимодействия воздуха и высыхающей древесины на складах создаётся своеобразный микроклимат: воздух имеет пониженную температуру, повышенную влажность и небольшую скорость циркуляции. Поэтому процесс атмосферной сушки длительный. Древесина высушивается до влажности 12-20% в зависимости от климата (температуры и влажности воздуха), породы и толщины материала.

Можно ускорить процесс путём применения более разреженной укладки, размещения штабелей в соответствии с господствующим направлением ветра, или принудительной циркуляцией воздуха с помощью вентиляторов. Ускорение сушки, с одной стороны, сильно снижает возможность появления химических и прокладочных окрасок, синевы и гнили, но с другой стороны, способствует снижению относительной влажности воздуха, что приводит к увеличению остаточных напряжений. Ускоренная атмосферная сушка позволяет довести материал до влажности 20-30% за время, составляющее от 1/2 до 1/4 продолжительности обычной атмосферной сушки.

Для снижения вероятности заражения древесины грибами и плесенью в начальный период её необходимо защищать антисептиками. Сам процесс осуществляется опрыскиванием, т. е. поверхностным нанесением или глубокой пропиткой, путём окунания досок и пакетов в автоклавах.

А - Основание штабеля (подстопные места)
В - Штабель пиломатериалов с перекрестной укладкой
С - Инвентарная крыша (досчатые фермы, досчатые, скрытые рубероидом, щиты кровли)
D - Вентиляционная шахта
F - Штабель
а - Прижимные брусья (или бревна диаметром до 18 см)
b - Тяжи (проволока диаметром 3 - 4 мм)
c - Скрутки
d - Вынос кровли; одновременно - размеры (min) подготовленной площадки

Вакуумная сушка

Технология вакуумной сушки под давлением была изобретена в 1964 году. Сегодня в мире работает более 600 сушилок данного типа.

Вакуумная пресс-сушилка состоит из стальной нержавеющей камеры, которая внутри полностью герметична. Верх камеры закрыт эластичным резиновым покрытием в металлической рамке.

Доски укладываются внутрь камеры слоями, чередуясь с алюминиевыми нагревательными пластинами. Водяная помпа обеспечивает циркуляцию горячей воды внутри этих пластин. Вода нагревается внешним бойлером. Жидкостная вакуумная помпа обеспечивает вакуум внутри камеры.

После того, как древесина загружена в сушильную камеру, оператор устанавливает на панели управления параметры сушки: уровень вакуума (давление), температуру нагревательных пластин.

Практически каждая порода древесины требует своего уровня вакуума, который не изменяется на протяжении всей сушки. Изменяется только температура нагревательных пластин (параметры температур даны в таблицах производителя). Для программирования сушки и управления параметрами можно использовать микропроцессор.

Рассмотрим процесс сушки, состоящий из трех этапов:

1. Прогрев при атмосферном давлении.

2. Сушка нагреванием в вакууме.

3. Кондиционирование и охлаждение.

Прогрев. После того, как древесина уложена в камеру, переложена нагревательными пластинами и накрыта резиновым покрытием, начинается этап прогрева. Горячая вода, циркулируя в пластинах, нагревает древесину без включения вакуумной помпы. Влага в древесине не закипает, поскольку температура ниже 100°С, и следовательно, не происходит повреждения поверхности древесины.

Сушка. Когда температура внутри древесины достигает уровня, необходимого для сушки, включается вакуумная помпа, которая выкачивает воздух из камеры. В этом случае не происходит повреждения поверхности древесины, поскольку влага внутри древесины, двигаясь к поверхности, увлажняет её. Резиновое покрытие под воздействием атмосферного давления прижимает к полу камеры штабель древесины. Благодаря этому воздействию, доски делаются абсолютно ровными. Под воздействием высокой температуры и высокого уровня вакуума вода с поверхности древесины испаряется. Затем влага, как сконденсированная на стенках камеры, так и в виде пара, откачивается вакуумной помпой. Когда влажность древесины достигает установленного конечного значения, сушка переходит в фазу кондиционирования.

Кондиционирование и охлаждение. Нагревание пластин отключается, но вакуум в камере сохраняется. В этом случае древесина остывает под давлением пресса (1 кг/см2). После того, как древесина остыла достаточно, сушилка выключается.

Например: бук толщиной 32 мм высыхает в этих камерах до влажности 8% за 29 ч, а сосна толщиной 25 мм всего за 17 ч. Таким образом, вакуумные пресс-камеры сушат в 8-10 раз быстрее обычных и особенно эффективны при сушке толстых заготовок из ценных пород дерева, которые при сушке обычным способом могут давать трещины. Они занимают немного места, не нуждаются в фундаменте и расходуют намного меньше тепла. Объём камер (0,3-10 м3) позволяет использовать их на предприятиях с небольшим суточным объёмом производства.

Это даёт производителям неоценимое конкурентное преимущество - гибкость. Представьте себе, что к вам обращается клиент, который хочет купить лестницу из ясеня. Ему нужен всего 1 м3 высушенного материала. В случае с традиционной сушилкой объёмом, допустим, 50 м3 выполнить этот заказ теоретически возможно, а на практике - маловероятно. Ведь нужно ещё найти клиентов на 49 м3 сухого ясеня, купить 100 м3 круглого леса, распилить его и сушить не менее 30 дней. С вакуумной пресс-сушилкой объемом 1, 3 или 5 м3 вы в состоянии выполнить этот заказ за 4-5 дней. Таким образом, можно успешно конкурировать с крупными деревообрабатывающими комбинатами, работая в современных условиях с индивидуальными потребностями клиентов.

Но всё же имеется ряд существенных недостатков: большая трудоёмкость погрузо-разгрузочных работ; значительная неравномерность распределения конечной влажности по толщине материала и, соответственно, большие внутренние напряжения, малая вместимость камер. В силу этих причин вакуумно-кондуктивные камеры не получили широкого применения в промышленности, но в последнее время становятся всё более популярными. Этот способ является наиболее перспективным среди способов, направленных на ускорение процесса сушки.

Чтобы избавится от вышеперечисленных недостатков, с 1975 г. используются вакуумные сушилки с нагревом горячим воздухом. Характеристикой этого агрегата является конвекционная нагревательная система с вентиляцией, перпендикулярной по отношению к штабелю: поток воздуха, нагретый на внутренней стенке, перемещается мобильным соплом; под воздействием вращения этого сопла древесина подвергается нагреву с периодической сменой вакуумных фаз. То есть материал сначала прогревают, а потом вакуумируют. В древесине, нагретой до температуры кипения воды, происходит выкипание свободной воды из полостей клеток. Образовавшийся пар удаляется из материала под действием избыточного давления. После прекращения парообразования, т.е. охлаждения древесины, её вновь нагревают, и цикл многократно повторяют до достижения требуемой конечной влажности. Продолжительность циклов и их параметры зависят от породы, толщины и влажности материала. Такой способ даёт сокращение продолжительности процесса в 4 - 5 раз по сравнению с классическим конвективным способом при высоком качестве сушки.

Промышленные сушилки этого типа нашли распространение в производстве, работающем на толстом и трудно сушимом пиломатериале (из твёрдолиственных пород). Простая полуавтоматическая система позволяла управлять процессом сушения. В дальнейшем объединение двух одинарных сушилок в единый «тандем» дало заметное сокращение энергозатрат. Самая последняя сушилка - «Голиаф» - наконец позволила достичь цели: размеры загрузки составили 2,5х2,5 (3) м, полезная длина 13, 6 м и даже более.

Новые дорогостоящие вакуумно-термические сушильные камеры выпускаются такими компаниями, как WDE (Италия), Brunner и Lauber (Германия), IWT (Германия-Канада), причём камеры последней - с возможностью получения цветовой гаммы просушенного пиломатериала.

А вот сушилки фирмы Lauber предлагаются в тех случаях, когда для сохранения окраски дерева процесс сушки должен проходить быстро: например, для строительных лесоматериалов или для лиственных пород древесины. Сушилки «Мальбок» (Lauber) работают по технологии горячего пара. Процесс протекает без воздуха, в камере находится только водяной пар. Так как точка кипения воды в вакууме значительно ниже, процесс намного ускоряется. Для реализации различных технологических вариантов (обычная сушка, сушка без потребления воды или сушка вымораживанием) сушилки изготавливаются по специальному заказу. Объём загрузки камер - 1-30, а для сушки воздухом - 60, 100 или даже 1000 м3 пиломатериалов.

При эксплуатации сушилок часто возникает проблема снижения высоких энергозатрат. Например, на 100 м3 елового материала с исходной влажностью 80% при традиционной сушке до конечной влажности 10% необходимо в среднем израсходовать 30000 кВт/ч за всё время процесса. Отработанный воздух обычно выходит через выходной клапан наружу. В сушилке типа «Тандем» происходит иначе: в ней есть приспособление, очищающее отработанный воздух от влаги, забранной у древесины. Тепловую энергию сухого отработанного воздуха можно использовать далее: для отопления помещения или, опять же, для сушилки.

Основой всех агрегатов является алюминиевая конструкция с толстыми внутренними стенками с изоляцией из минваты. Внешний кожух выполнен из алюминиевого гофрированного листа.

При вакуумно-диэлектрическом способе сушки нагрев материала до 45 - 50°С осуществляется за счёт энергии высокочастотного электромагнитного поля при постоянном вакууме. Древесина находится в среде почти чистого пара малого давления, благодаря чему процесс происходит при малом перепаде влажности по толщине сортиментов и незначительных внутренних напряжениях.

Продолжительность сушки в этом случае уменьшается в 10 - 12 раз. Однако стоимость при таком способе достаточно большая из-за дороговизны и сложности оборудования и больших энергозатрат. И из опыта эксплуатации вакуумно-диэлектрических камер следует, что пока не удалось достичь хорошего качества сушки: материал из-за неравномерности электромагнитного поля имел очень большой разброс конечной влажности.

Поскольку температура кипения воды в вакууме ниже, чем при атмосферном давлении, то, создавая вакуум глубиной 0,9 кг/см2, температуру сушильного агента снижают до 40- 45°С. Таким образом, можно вести интенсивный и, вместе с тем, низкотемпературный процесс сушки при полном сохранении природных свойств древесины. Если сушить при постоянном неглубоком вакууме (0,2 кг/ см2) и одновременном конвективном нагреве, то это даёт также хорошее качество. Продолжительность процесса при этом не уменьшается, а соответствует конвективной сушке. Себестоимость сушки в три раза меньше за счёт использования теплоты конденсации испаренной воды и применения низких температур сушильного агента.

В общем, основываясь на анализе вышеупомянутых результатов, можно утверждать: сушилка типа «Голиаф» - это агрегат большой производительности, удобный для обработки больших размеров; значительно сокращая время сушки, по сравнению с обычной сушилкой, «Голиаф» позволяет существенно сократить количество древесины на складе и быстро реагировать на запросы рынка; значительное снижение расходов понижает стоимость сушения; что касается периода амортизации, сушилка может работать гораздо более длительное время. Поскольку камера из нержавеющей стали очень долговечна, это может принести дополнительную прибыль до истечения срока амортизации и будет иметь высокую рыночную и остаточную стоимость после него.

Сушка в СВЧ

СВЧ-сушка аналогична диэлектрической сушке токами высокой частоты (ВЧ = 25 МГц). Проводится на более высоких частотах 460, 915- 2500 МГц. Поэтому энергия СВЧ-поля передаётся в древесину путём излучения свободных, не связанных линией передачи энергии (контуром) колебаний в пространство герметичной металлической камеры, где располагается штабель пиломатериалов. В этом случае взаимодействие электромагнитного поля с древесиной максимально и не зависит от характеристик древесины и нагрузочных способностей генераторов. Генераторы пространственно разнесены с высушиваемым материалом. Условия сушки близки к оптимальным.

Достоинства. Качество сушки близко к естественному, высокая скорость сушки, энергозатраты средние: 550 кВт/ч на 1 м3 сосны, 2000 кВт/ч на 1 м3 дуба. Не требует коммуникаций, мобильна, имеет малые размеры. Универсальна, способна высушивать любые диэлектрические материалы: лекарственные травы, ягоды, фрукты, овощи, керамику, удобрения и т.д.

Недостатки. Высокая стоимость магнетронных генераторов и малый ресурс их работы (около 600 ч). Большие энергетические затраты. Трудность контроля процесса (над температурой среды и древесины, в силу специфики микроволновой энергии). Частота случаев возгорания материала изнутри. Малый объём одновременно высушиваемых пиломатериалов: объём загрузки - до 7 м3 для хвойных пород и до 4,5 м3 для твёрдолиственных. Комбинированный СВЧ-способ ещё мало изучен, и режимы сушки не отработаны.

Характер процессов, происходящих при сушке пиломатериалов в СВЧ-печи (СВЧ электромагнитном поле) не отличается существенно от сушки другими методами. Отличие состоит лишь в способе нагрева пиломатериалов. Поэтому, как и при других способах, процесс подразделяется на четыре этапа.

Первый этап - разогрев с отпариванием. При СВЧ-сушке связан с нагревом заложенного объёма пиломатериалов и находящегося в них объёма воды до температуры 55- 60°С, при которой начинается сушка. Одновременно с этим при отключенной вентиляции вытяжки идёт увеличение влажности воздуха в сушильной камере до 100% и более. Это обеспечивает отпаривание древесины. Последнее необходимо для снятия имевшихся в древесине напряжений и улучшения влагопроводности поверхностных слоёв пиломатериалов. Для рекомендуемых объёмов закладки и располагаемой энергетики СВЧ-печи длительность первого этапа составляет 6- 8 ч. Характерными признаками конца первого этапа являются накопление в сушильной камере воды в виде капель на стенках и даже небольших луж.

Второй этап - собственно сушка с выпариванием основной влаги; является логическим продолжением первого этапа. Сущность этого этапа - удаление интенсивно выделяющейся влаги из пиломатериалов при их дальнейшем нагреве. Величина подъёма температуры при этом может составлять всего 5- 10°С, т. е. 60- 70°С в конечном итоге. Для удаления большого количества выделившейся влаги из камеры вентилятор работает в усиленном режиме. Далее, с выпариванием основного объёма влаги из слоистых структур древесины начинаются процессы выпаривания влаги из клеточных структур (обычно это наступает при влажности древесины 24- 30%). Интенсивность выхода влаги при этом существенно замедляется. Подаваемая к пиломатериалам энергия начинает всё больше тратиться на их нагрев, что приводит к возрастанию температуры до значения, заданного оператором. Усиленный режим работы вентилятора в этих условиях может привести к снижению влажности до низких уровней порядка 25- 30%, что затрудняет выход влаги с поверхности. Таким образом, нарастание температуры пиломатериалов до заданной величины может служить критерием для перехода к третьему этапу (для задания нового значения температуры и режима работы вентилятора вытяжки).

Третий этап - досушка пиломатериалов до нижнего (заданного) порога влажности. Он характеризуется сушкой в жёстких режимах, прежде всего температурных. Целью введения таких режимов является эффективное и быстрое удаление клеточной влаги. Для поддержания хорошей влагопроводности поверхностных слоёв древесины уровень влажности в сушильной камере должен быть вновь высокий, порядка 70%. С этой целью вентилятор вытяжки переводится в нормальный режим работы, а температура сушки поднимается на 5- 10°С.

Необходимо осознавать, что длительная сушка пиломатериалов в жёстких режимах, особенно трудносохнущих пород (дуб, ясень), может привести к потемнению древесины и к внутренним трещинам в ней. Критерием окончания третьего этапа является достижение требуемого уровня влажности.

Четвёртый этап - охлаждение пиломатериалов до температуры внешней среды. Это производится вне СВЧ-сушки, и тем самым повышается производительность:

до 210 м3/мес. - хвойные породы;
180 м3/мес. - берёза, лиственница;
до 100 м3/мес. - дуб, бук, ясень.

Общая средняя продолжительность нахождения пиломатериалов в СВЧ - 20- 24 ч при WM4 = 48-55%, WKOS = 6- 8%. Для твёрдолиственных пород - дуб, бук, ясень - показатели иные.

Охлаждение проводится естественным путем без выгрузки пиломатериалов из камеры. СВЧ-печь отключается, створки дверей приоткрываются, пиломатериалы остывают за счет конвекции. Разность температур пиломатериалов и внешней среды при выгрузке не должна быть более 20°С. Обычно длительность остывания пиломатериалов составляет 5- 6 ч.

Следует отметить, что выделение описанных выше этапов условно и их длительность и соотношение определяются многими факторами: видом и сортиментом древесины, начальной влажностью, начальной температурой пиломатериалов, объёмом закладки. Очевидно, что при начальной влажности этапа 30- 40% сушка по условиям второго этапа может и не проводиться, а длительность первого этапа будет меньше. Все эти особенности необходимо учитывать и сверять с реальными параметрами процесса сушки по указанным критериям.

Сушка сосновых пиломатериалов. Сосна в силу своего строения (слоистая структура с длинными продольными волокнами и капиллярами) и химического состава (наличие в древесине скипидара) имеет хорошую влаго- и газопроводность. По этим причинам сосна может выдерживать высокие температуры до 100-120°С без внешних и внутренних физических повреждений. Согласно экспериментальным данным, значение температуры сушки сосновых пиломатериалов всех сортиментов составляет 100°С. Из-за малой плотности древесины и большой её влагоотдачи, длительности первого и второго этапов в сушке увеличиваются. Длительность первого этапа составляет 7- 8 ч, второго - до 80% всего времени сушки. Переход от второго этапа к третьему (переключение режима вентиляции вытяжки) производится при достижении температуры пиломатериалов 90°С.

Сушка буковых материалов. Бук относится к трудносохнущим видам пород древесины. При естественной сушке на воздухе бук быстро, в течение 1-2 суток, портится (синеет, поражается грибком), а также приобретает сильные напряжения (пиломатериалы закручивает в разных направлениях, появляются многочисленные трещины, наибольшие - по сердцевинной трубке). Исходя из вышеизложенного, качество СВЧ-сушки буковых пиломатериалов в сильной степени зависит от их начального качества и состояния.

Для исключения указанных недостатков распиловку бука необходимо проводить непосредственно перед сушкой, а сам бук держать в водяных ваннах.

Несмотря на высокую плотность древесины по сравнению с другими породами, бук хорошо сохнет в СВЧ-печи из-за наличия длинных продольных волокон и капилляров. Буковые пиломатериалы при СВЧ-сушке сушатся в мягких режимах с температурой не более 90°С. Посиневшие участки древесины на начальном этапе заражения грибком при СВЧ-сушке восстанавливают свой первоначальный цвет. При этом грибковые колонии погибают, а древесина стерилизуется. Переход от второго этапа сушки к третьему производится при достижении пиломатериалами температуры 80°С.

Сушка ясеневых и дубовых пиломатериалов. Дуб, ясень в силу своего строения (наличия множественных коротких переплетённых волокон по типу войлока) являются наиболее трудносохнущими породами древесины и обладают низкой влаго- и газопроводностью. При СВЧ-сушке требуют применения мягких режимов: 70- 75°С при сушке пиломатериалов с влажностью 80- 30% и 80- 85°С при сушке пиломатериалов с влажностью 30% и менее. В силу малой влагоотдачи и высокой плотности древесины динамика нагрева данных пиломатериалов в СВЧ-печах быстрее, чем у других пород. Влажность воздуха в сушильной камере необходимо держать на уровне 60- 80%. На третьем этапе досушка пиломатериалов с 30 до 8- 6% конечной влажности, особенно для сортиментов 40- 60 мм, проходит очень медленно. Причиной этому является обсыхание поверхностного слоя пиломатериалов на глубину 10- 15 мм (длину волокон) и блокирование влаги внутри. Для ускорения сушки в этих случаях применяют принудительное отпаривание (влагообработку) и подъём температуры сушки до 85- 90°С при влажности от 16% и ниже. Принудительное отпаривание проводят путём увлажнения (орошения) поверхности разогретых пиломатериалов водой из разбрызгивателя из расчёта 7- 10 л воды на 1 м3 пиломатериалов и зачехлением штабеля полиэтиленовой пленкой; сушка в таком состоянии длится 30-40 мин. Затем полиэтиленовый чехол удаляется, и сушка продолжается в обычном порядке.

Сушка пиломатериалов из ольхи. По своему строению и физическим свойствам ольха близка к сосне. Технологии сушки данных пород подобны. Различие состоит в использовании более мягкого температурного режима: температура сушки составляет 90°С.

Особенности сушки материалов с сердцевиной. Высушивание таких пиломатериалов без трещин и напряжений по сердцевине на торцах практически невозможно. Для уменьшения торцевых трещин целесообразно покрывать последние защитным слоем, ухудшающим влагопроводность в продольном направлении. С этой целью могут использоваться меловые или известковые водные растворы.

Камерная сушка

Процесс сушки происходит в конвективных камерах. Эти камеры классифицируются по следующим признакам: принципу действия, устройству ограждения, виду теплоносителя, циркуляции агента сушки.

По принципу действия различают камеры периодического действия и непрерывного. Камеры периодического действия представляют собой помещения, в которые загружается определённый объём материала, высушивается, а затем выгружается. Режимы сушки здесь изменяются с течением времени в зависимости от влажности древесины. На период загрузки и выгрузки камеры процесс сушки прекращается. Камеры непрерывного действия представляют собой помещения, туннели, в которых постоянно находится древесина, перемещаемая на вагонетках. Материал высушивается по мере прохождения им туннеля, от сырого конца к сухому. Режимы сушки изменяются по мере продвижения материала по длине камер.

Камеры непрерывного действия применяются обычно на крупных предприятиях при массовой сушке товарных пиломатериалов до транспортной влажности, а также для сушки хвойных пиломатериалов, берёзы и осины, идущих на столярно-строительные изделия, тару, сельхоз- и вагоностроение.

По устройству ограждения камеры подразделяются на стационарные и сборные . Стационарные камеры строятся на месте их эксплуатации из строительных материалов, а сборные, как правило, металлические, изготавливаются заводским способом и собираются на месте их эксплуатации.

По теплоносителю камеры различаются на паровые, электрические, водяные, газовые. В первых трёх агентом служит влажный воздух или перегретый пар, а в последнем - смесь воздуха и топочных газов.

По циркуляции воздуха различают камеры с естественной и принудительной циркуляцией. Газовые и электрические бескалориферные камеры (аэродинамические) имеют только принудительную циркуляцию.

Естественная циркуляция создаётся за счёт разности плотности нагретого и охлаждённого воздуха: горячий, более лёгкий воздух стремится вверх, а охлаждённый, тяжёлый - вниз. Поскольку воздух в силу этого циркулирует вертикально по штабелю, пиломатериалы укладываются со шпациями. Камеры с естественной циркуляцией давно устарели, хотя продолжают эксплуатироваться на ряде предприятий. Продолжать эксплуатировать такие камеры нерационально, так как они малопроизводительны, качество сушки в них низкое из-за большой неравномерности распределения конечной влажности по штабелю.

Принудительная циркуляция воздуха или газа достигается при помощи вентиляторов. Побуждение циркуляции может быть прямое - когда перемещение воздуха осуществляется непосредственно вентилятором, или косвенное (эжекционное) - когда побудителем циркуляции служит энергия струй сушильного агента, вытекающих с большими скоростями из сопл эжекторов. Эжекционные камеры были распространены в 50- 60-х гг., теперь же эта конструкция устарела. Но несмотря на большие энергозатраты на циркуляцию, большую неравномерность сушки, эти камеры продолжают эксплуатироваться.

По кратности циркуляции сушильного агента камеры могут быть с однократной и многократной циркуляцией. При однократной циркуляции сушильный агент после прохождения через штабель полностью выбрасывается в атмосферу; при многократной - воздух постоянно циркулирует по штабелю в течение всего процесса сушки и только часть его выбрасывается. В современных лесосушильных камерах используется только многократная циркуляция воздуха.

Современные лесосушильные камеры имеют прямое побуждение воздуха, создаваемое осевыми или центробежными вентиляторами.

В зависимости от направления движения сушильного агента различают камеры с вертикальным или горизонтальным кольцом циркуляции. Вентиляторные установки в камерах с вертикальным кольцом циркуляции расположены в верхней части над штабелями, а с горизонтальным - за штабелем.

Конденсационный способ

По принципу действия конденсационный способ относится к замкнутому циклу, т.е. сушильный агент совершает циркуляцию по камере без выброса в атмосферу и, соответственно, без подпитки свежим воздухом. Воздух, насыщенный влагой, отобранной из древесины, омывает холодную поверхность и охлаждается до температуры ниже точки росы. Часть влаги, содержащейся в воздухе, конденсируется, а теплота, выделенная при этом, используется для подогрева сушильного агента. В качестве охладителя используется фреон.

Теоретически конденсационный сушильный цикл с холодильником, играющим роль теплового насоса, характеризуется нулевым расходом тепла на испарение влаги. Затраты электроэнергии здесь идут на прогрев материала и теплопотери, а также на привод компрессора и вентиляторов. Для компенсации теплопотерь агрегат снабжается дополнительным калорифером с внешним электропитанием.

По данным зарубежных компаний Hildebrand, Brunner, Vanicek, энергопотребление конденсационных сушилок составляет 0,25- 0,5 кВт/ч на 1 л испаренной воды в зависимости от влажности материала, увеличиваясь при её снижении. Это примерно в два раза меньше расхода энергии в обычных сборно-металлических камерах периодического действия.

Из-за свойств фреона, который используется в качестве хладагента, в конденсационных камерах применяются низкотемпературные режимы сушки с температурой не выше 45°С. При повышении температуры сушильного агента более 45°С КПД таких сушилок понижается. Поэтому производительность их малая, так как продолжительность процесса в 2- 3 раза больше, чем в камерных сушилках. Эти сушилки следует использовать в тех случаях, когда электроэнергия является наиболее дешёвой по сравнению со всеми другими теплоносителями.

Учитывая, что этот способ даёт сокращение энергозатрат, перспективной является разработка новых конденсационных сушильных камер с холодильными установками на хладагенте, позволяющем применять нормальные режимы сушки.

Отечественных конденсационных сушилок пока нет. Из импортных можно рекомендовать сушилки следующих компаний: Vanicek , Hildebrand-Brunner , Nardi .

Современный способ сушки древесины инфракрасной сушилкой видео