Размещения сочетания без повторений. Перестановки, размещения и сочетания

Монтаж

Основные формулы комбинаторики

Задачи, в которых речь идет о тех или иных комбинациях объектов, их называют комбинаторными задачами . Область математики, в которой рассматриваются комбинаторные задачи, называют комбинаторикой .

Комбинаторика – область математики, в которой рассматриваются задачи о тех или иных комбинациях объектов.

Правило суммы

Пусть имеется n попарно непересекающихся множеств A 1 , A 2 ,…A n, содержащих m 1 , m 2 ,…, m n элементов соответственно. Число способов, которыми можно выбрать один элемент из всех этих множеств, равно

m 1 m 2 … m n .

Пример. На курсе имеется 3 группы. В первой – 25 человек, во второй – 30, в третьей – 20. Сколькими способами из них можно выбрать одного студента?

Решение. Из первой группы одного человека можно выбрать 25 способами, из второй – 30, из третьей – 20. Чтобы найти ответ, нужно сложить все эти способы:

25 30 20=75.

Ответ: выбрать одного студента из трех групп можно 75 способами.

Правило произведения

Пусть имеется. n множеств A 1 , A 2 ,…A n ,содержащих m 1 , m 2,…, m n элементов соответственно. Число способов, которыми можно выбрать по одному элементу из каждого множества

m 1 ּm 2 ּ …ּm n .

Пример. На курсе имеется 3 группы. В первой – 25 человек, во второй – 30, в третьей – 20. Сколькими способами из каждой из них можно выбрать по одному студенту?

Решение. Из первой группы одного человека можно выбрать 25 способами, из второй – 30, из третьей – 20. Чтобы найти ответ, нужно перемножить эти числа:

25ּ30ּ20=15000.

Ответ: для того, чтобы из каждой группы выбрать по одному студенту, существует 15000 способов.

^ Если выбираем один элемент из нескольких множеств, то применяем правило суммы.

Если выбираем по одному элементу из нескольких множеств, то применяем правило произведения.

Факториалом числаn называется последовательное произведение натуральных чисел от единицы до самого числа n:

Примечание: 0!=1.

Перестановки без повторений

Перестановками из n различных элементов называются размещения из этих n элементов по n. Перестановки - частный случай размещений.

Пример. Сколькими способами можно расставить в шеренгу студентов группы из 25 человек?

Решение. Число способов есть число перестановок из 25 элементов, то есть:

P 25 = 25ּ24ּ23ּ…ּ1=25!=1,55ּ10 25 .

Ответ: расставить в шеренгу студентов группы из 25 человек можно 1,55ּ10 25 способами.

Размещения без повторений

Различные упорядоченные подмножества по m элементов данного множества, содержащего n элементов, называются размещениями из n по m. Их число равно:

В частности: .

Пример. Из группы, состоящей из 25 человек, надо выбрать шахматную команду из четырех человек на I, II, III и IV доски. Сколькими способами это можно сделать?

Решение. Так как из 25 человек выбираются 4 и порядок важен, то число способов есть число размещений из 25 по 4, то есть:

Ответ: выбрать из 25 человек шахматную команду из четырех человек на I, II, III и IV доски можно 303600 способами.

Сочетания без повторений.

Различные неупорядоченные подмножества по m элементов из данного множества, содержащего n элементов, называются сочетаниями из n по m. Их число равно:

В частности, .

Пример. Сколькими способами из группы в 25 человек можно выбрать баскетбольную команду из пяти человек?

Решение. Так как из 25 человек выбираются 5 и порядок не важен, то число способов есть число сочетаний из 25 по 5, то есть:

Ответ: из группы в 25 человек можно выбрать баскетбольную команду 53130 способами.

В этом разделе будут рассмотрены три вида соединений без повторений: размещения, перестановки и сочетания. Ради краткости добавку «без повторений» будем опускать.

1. Размещения. Размещения из n элементов по – это упорядоченные наборы из попарно различных элементов -множества . Таким образом, два размещения из элементов по различаются либо порядком, либо составом входящих в них элементов. Например, размещения из 3-множества по 2 исчерпываются следующими упорядоченными парами:

, , , , , .

Нас будет интересовать задача нахождения числа всех размещений из элементов по . В качестве первого элемента можно выбрать любой из элементов множества . После того как выбран первый элемент, второй элемент можно выбрать лишь способами (можно взять любой элемент, исключая выбранный). После выбора первых двух элементов остаются лишь возможности выбрать третий элемент и т. д. Последний -й элемент можно выбрать способами – ведь до него уже выбраны элемент, а потому осталось лишь элементов. По правилу произведения получаем, что число всевозможных упорядоченных наборов равно произведению чисел , , , …, , т.е. справедлива следующая

Т е о р е м а 1. Число размещений из элементов по находится по формуле

Напомним, что произведение первых n натуральных чисел, т.е. , называют n-факториалом и обозначают . Произведение можно записать в виде дроби = и поэтому формулу (1) можно переписать следующим образом

В частности, при из формулы (2) получаем

Это означает, что существует единственный упорядоченный набор длины 0 – пустой кортеж, не имеющий ни одной компоненты.

Пример 1. Найти число пятизначных чисел в десятичной системе счисления, в записи которых цифры не повторяются.

□ Рассуждая по аналогии с тем, как это делалось при рассмотрении примера 1 (2-й способ) из § 2, приходим к выводу, что искомое число есть .

2. Перестановки. Рассмотримтеперь различные линейные упорядочения данного -множества . Получаемые при этом упорядоченные наборы отличаются друг от друга лишь порядком входящих в них элементов. Их называют перестановками (без повторений) из n элементов, а их число обозначают через . Например, если , то = 6, так как из трех элементов можно составить шесть перестановок:



, , , , , .

Общая формула для получается из формулы (1), поскольку перестановка из элементов – это то же самое, что размещение без повторений из элементов по . Полагая в (1) получим = = = = . Итак, справедлива

Т е о р е м а 2. Число перестановок из элементов равно -факториал, т.е.

Полагая в формуле (2) , получаем

Сравнивая (3) и (4), приходим к выводу, что 0! = 1. На первый взгляд это равенство кажется парадоксальным. Но для всех справедливо равенство = . Если потребовать, чтобы это равенство было справедливо и при , то получим . Отсюда вновь следует, что естественно положить0! = 1 .

Пример 2. Сколькимиспособамиможно расположить на полке 7 различных учебников так, чтобы «Алгебра» и «Геометрия» не стояли рядом?

□ Условимся указанные учебники обозначать для краткости буквами А и Г соответственно. Число всевозможных способов расстановки учебников равно числу перестановок из семи элементов, т.е. . Но при этом сосчитаны и те, в которых встречаются рядом учебники А и Г, причем в двух позициях: АГ и ГА. Считая АГ и ГА за одну книгу, для каждого такого расположения получим расстановок, в которых учебники А и Г встречаются рядом. Искомое число расстановок учебников равно .

3. Сочетания. Одной из важнейших задач комбинаторики является подсчет числа k -подмножеств данного n -множества . Такие неупорядоченные подмножества называются сочетаниями из элементов по , а их число обозначают через (от французского слова combinaison – сочетание). Например, из элементов 4-множества можно составить следующие 2-множества: , , , , , . Число этих подмножеств равно 6. Следовательно, = 6. Отметим, что = 1, так как каждое множество имеет лишь одно 0-множество, а именно, пустое множество . Далее понятно, что = , поскольку в ‑множества содержится одноэлементных подмножеств. Ясно также, что .

Выведем формулу, выражающую через и . Для этого укажем способ получения всех размещений из элементов по . Выберем любое k -подмножество данного n -множества . Это можно сделать способами. Каждое такое k -подмножество упорядочим всевозможными способами. Таких различных упорядочений столько, сколько можно составить перестановок из элементов, т.е. = . Понятно, что таким способом получатся все размещений из элементов по . Значит, имеет место равенство = . Отсюда вытекает справедливость следующего утверждения.

Т е о р е м а 3. Число сочетаний из n элементов по k вычисляется по формуле :

= = = . (5)

Пример 3. Найти число всех диагоналей правильного n -угольника.

□ Любые две вершины n -угольника однозначно определяют отрезок, соединяющие эти вершины. Поэтому число всевозможных отрезков, соединяющих вершины n -угольника, равно числу сочетаний из по 2, т.е. . Но среди них находятся и сторон n -угольника, которые диагоналями не являются,

Таким образом, искомое число равно

.

Например, при получаем, что правильный 10-угольник имеет = 35 диагоналей.

Свойства сочетаний.

□ В самом деле, в силу формулы (5) имеем

= = = .

□ Действительно,

= = = . =

Непосредственно свойств ‑ сочетаний вытекают следующие

НЕУПОРЯДОЧЕННЫЕ УПОРЯДОЧЕННЫЕ РАЗБИЕНИЯ С ФИКСИРОВАННЫМИ РАЗМЕРАМИ ЧАСТЕЙ

Цель: Изучить на практике методику расчета числа перестановок без повторений и с повторениями

Задание 4 () .

Задание 5 (начисло перестановок с повторениями).

Задание 6 (начисло неупорядоченных разбиений с фиксированными размерами частей) .

Задание 7 () .

Задание 4 (начисло перестановок без повторений) .

Сколько различных n n штук цифр: 1,3,5,7,9?

ЧИСЛО ПЕРЕСТАНОВОК БЕЗ ПОВТОРЕНИЙ. КРАТКАЯ ТЕОРИЯ

Перестановками без повторений или просто перестановками из элементов п различных типов называются их последовательности, отличающиеся друг от друга только порядком входящих в них элементов. (Здесь и дальше под последовательностью из п элементов понимается их линейно упорядоченное множество, аналогичное п книгам, стоящим в ряд на полке.)

Пример. Перестановки из 3 различных элементов а, b и с: аbс, bса, саb, сbа, bас, асb.

Число всех перестановок из п различных элементов (обозначается Р п) есть Р п = 1 2 3 ... n = п ! (п ! читается "эн-факториал").

В таблице ниже приведены числовые значения факториалов первых натуральных чисел и нуля.

Таблица. Значения факториалов первых натуральных чисел и нуля.

n=
n!=

КОНЕЦ ТЕОРИИ.

Решение.

В задании 4 n =5, ибо переставляются местами всевозможными способами n =5 штук различных цифр: 1,3,5,7,9. При этом каждой новой перестановке цифр соответствует новый телефонный номер (натуральное число). Поэтому искомое число различных телефонных номеров равно числу различных перестановок без повторений из n =5 штук различных элементов.

Согласно теории, искомое число равно Р 5 = 5!= 120 различных 5– значных телефонных номеров.

Ответ: 120 различных 5– значных телефонных номеров.

Задание 5 (на число перестановок с повторениями.)

Сколько различных n – значных телефонных номеров (натуральных чисел) можно написать, переставляя следующий набор n штук цифр: 1,1,1,3,3,5?

ЧИСЛО ПЕРЕСТАНОВОК С ПОВТОРЕНИЯМИ. КРАТКАЯ ТЕОРИЯ

Перестановки с повторениями

Перестановками с повторениями из т элементов n различных типов, среди которых k 1 одинаковых элементов 1-го типа, k 2 одинаковых элементов 2-го типа, ... , k n одинаковых элементов п -го типа (k 1 + k 2 + ... + k п = m ) , называются их последовательности, отличающиеся только порядком входящих в них элементов.



Пример. Перестановки из 3 элементов, среди которых 2 одинаковых элемента типа а и 1 элемент типа b: ааb, аbа, bаа.

Число перестановок из т элементов, среди которых k 1 - одинаковых элементов 1-го типа, k 2 одинаковых элементов2-го типа,..., k п - одинаковых элементов n -го типа [обозначается Р (m ; k 1 ,k 2 ,..., k п) ] равно:

Р (m ; k 1 ,k 2 ,..., k п) = т!/ (k 1 !k 2 !... k п !).

Для примера перестановок с повторениями из 3 элементов, среди которых 2 одинаковых типа а и 1 элемент типа b, имеем Р (m=3 ; k 1 =2,k 2 =1) = 3!/ (2 !1!).

КОНЕЦ ТЕОРИИ.

Решение.

В задание 5 m =6, ибо переставляются местами всевозможными способами m =6 штук различных цифр: 1,1,1,3,3,5, среди которых есть повторяющиеся (одинаковые). При этом каждой новой перестановке цифр соответствует новый телефонный номер (натуральное число). Поэтому искомое число различных телефонных номеров равно числу различных перестановок с повторениями из m =6 штук элементов, среди которых k 1 =3 одинаковых элементов 1-го типа (цифра 1), k 2 =2 одинаковых элементов2-го типа (цифра 3), k 3 =1одинаковых элементов 3 -го типа (цифра 5), равно Р (m ; k 1 ,k 2 ,..., k п) = т!/ (k 1 !k 2 !... k п !), Р (6; 3, 2, 1) = 6!/(3! 2! 1!)= =60.

Ответ: Р (6; 3, 2, 1) = 60, т. е 60 различных вариантов 6– значных телефонных номеров (6-значных чисел), содержащих цифру 1 трижды, 3 -дважды и 5 - один раз.

Задание 6 (на число неупорядоченных разбиений с фиксированными размерами частей) .

Сколько всего вариантов можно получить, разбивая группу из пяти человек (из пяти солдат) на три подгруппы - две подгруппы по два человека (по два автоматчики) и одна подгруппа из одного человека (из одного пулеметчика)?

НЕУПОРЯДОЧЕННЫЕ РАЗБИЕНИЯ. КРАТКАЯ ТЕОРИЯ

Неупорядоченное разбиение n -элементного множества X - это любое семейство {X 1 , X 2 ,…, X k }, где 1≤k≤п; X 1 , X 2 ,…, X k - непустые попарно непересекающиеся подмножества множества X , объединение которых равноX.



Называем такое разбиение неупорядоченным, так как семейство - это неупорядоченная совокупность.

Пример. Для множества {а,b,с} неупорядоченное разбиение это, например, {{а},{b,с}}. Причем {{а},{b,с}}={{b,с},{а}}.

Для множества с п элементами обозначим через D (n ; k 1 , k 2 ,…, k n) число всех таких неупорядоченных разбиений, в которых есть k 1 подмножеств с одним элементом, k 2 подмножеств с двумя элементами и т.д., где k 1 ≥0, k 2 ≥0,…, k n ≥0; k 1 +2 k 2 +…+n k n = n.

КОНЕЦ ТЕОРИИ.

Решение.

Каждый вариант- это неупорядоченное разбиение { Иванов, Петров, Сидоров, Андреев, Борисов }. Множество из 5 элементов Один из вариантов разбиения {{Иванов, Петров}, {Сидоров, Андреев}, {Борисов}}

Имеем п = 5, k 1 =1, k 2 =2, k 3 =0, k 4 =0, k 5 =0 (так как по условию нет подгрупп из трех, четырех, пяти человек).

Ответ: 15 вариантов.

Задание 7 (начисло упорядоченных разбиений с фиксированными размерами частей) .

Сколькими способами можно выбрать из десяти солдат трех пулеметчиков, трех гранатометчиков и четырех автоматчиков (3 пулеметчика 3 гранатометчика 4 автоматчика, всего 10 солдат)?

УПОРЯДОЧЕННЫЕ РАЗБИЕНИЯ. КРАТКАЯ ТЕОРИЯ

Упорядоченным разбиением конечного множества X с n элементами называется любой кортеж вида <X 1 , X 2 ,…, X k >, где 1 ≤k n ; X 1 , X 2 ,…, X k - непустые попарно непересекающиеся, подмножества множества X, объединение которых равно X.

Называем такое разбиение упорядоченным , так как элементы кортежа упорядочены.

Пример. Для множества {а,b,с} упорядоченное разбиение это, например, кортеж <{{а},{b,с}} >. Причем <{{а},{b,с}}> ¹<{{b,с},{а}} >.

Для множества с п элементами обозначим через E (n ; m 1 , m 2 ,…, m k ,) число всех таких упорядоченных разбиений на подмножества X 1 , X 2 ,…, X k , содержащие m 1 , m 2 ,…, m k , где m 1 ≥0, m 2 ≥0,…, m k ≥0; m 1 + m 2 +…+ m k = n.

Число всех упорядоченных разбиений <X 1 , X 2 ,…, X k > множества с п элементами на подмножества X 1 , X 2 ,…, X k , содержащие m 1 , m 2 ,…, m k , элементов соответственно. определяется по полиномиальной формуле

где m 1 ≥1, m 2 ≥1,…, m n ≥1; m 1 + m 2 +…+m k = n.

КОНЕЦ ТЕОРИИ.

Решение.

В задании имеем упорядоченное разбиение < X 1 , X 2 , X 3 > множества с десятью элементами, где X 1 - подмножество пулеметчиков, Х 2 - подмножество гранатометчиков, Х 3 - подмножество автоматчиков;

поэтому п = 10, m 1 = 3, т 2 , = 3, т 3 = 4.

Тогда всего есть

Ответ: 4200 вариантов

Следует отметить, что комбинаторика является самостоятельным разделом высшей математики (а не частью тервера) и по данной дисциплине написаны увесистые учебники, содержание которых, порой, ничуть не легче абстрактной алгебры. Однако нам будет достаточно небольшой доли теоретических знаний, и в данной статье я постараюсь в доступной форме разобрать основы темы с типовыми комбинаторными задачами. А многие из вас мне помогут;-)

Чем будем заниматься? В узком смысле комбинаторика - это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа - люди, звери, грибы, растения, насекомые и т.д. При этом комбинаторику совершенно не волнует, что множество состоит из тарелки манной каши, паяльника и болотной лягушки. Принципиально важно, что эти объекты поддаются перечислению - их три (дискретность) и существенно то, что среди них нет одинаковых.

С множеством разобрались, теперь о комбинациях. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение). Давайте прямо сейчас посмотрим, как это происходит:

Перестановки, сочетания и размещения без повторений

Не пугайтесь малопонятных терминов, тем более, некоторые из них действительно не очень удачны. Начнём с хвоста заголовка - что значит «без повторений »? Это значит, что в данном параграфе будут рассматриваться множества, которые состоят из различных объектов. Например, … нет, кашу с паяльником и лягушкой предлагать не буду, лучше что-нибудь повкуснее =) Представьте, что перед вами на столе материализовалось яблоко, груша и банан (при наличии таковых ситуацию можно смоделировать и реально). Выкладываем фрукты слева направо в следующем порядке:

яблоко / груша / банан

Вопрос первый : сколькими способами их можно переставить?

Одна комбинация уже записана выше и с остальными проблем не возникает:

яблоко / банан / груша
груша / яблоко / банан
груша / банан / яблоко
банан / яблоко / груша
банан / груша / яблоко

Итого : 6 комбинаций или 6 перестановок .

Хорошо, здесь не составило особого труда перечислить все возможные случаи, но как быть, если предметов больше? Уже с четырьмя различными фруктами количество комбинаций значительно возрастёт!

Никаких мучений - 3 объекта можно переставить способами.

Вопрос второй : сколькими способами можно выбрать а) один фрукт, б) два фрукта, в) три фрукта, г) хотя бы один фрукт?


Зачем выбирать? Так нагуляли же аппетит в предыдущем пункте - для того, чтобы съесть! а) Один фрукт можно выбрать, очевидно, тремя способами - взять либо яблоко, либо грушу, либо банан.

Формальный подсчёт проводится по формуле количества сочетаний :

Запись в данном случае следует понимать так: «сколькими способами можно выбрать 1 фрукт из трёх?»

б) Перечислим все возможные сочетания двух фруктов:

яблоко и груша;
яблоко и банан;
груша и банан.

Количество комбинаций легко проверить по той же формуле:

Запись понимается аналогично: «сколькими способами можно выбрать 2 фрукта из трёх?».

в) И, наконец, три фрукта можно выбрать единственным способом:

Кстати, формула количества сочетаний сохраняет смысл и для пустой выборки:
способом можно выбрать ни одного фрукта - собственно, ничего не взять и всё.

г) Сколькими способами можно взять хотя бы один фрукт? Условие «хотя бы один» подразумевает, что нас устраивает 1 фрукт (любой) или 2 любых фрукта или все 3 фрукта:
способами можно выбрать хотя бы один фрукт.

Для ответа на следующий вопрос мне требуется два добровольца… …Ну что же, раз никто не хочет, тогда буду вызывать к доске =)

Вопрос третий : сколькими способами можно раздать по одному фрукту Даше и Наташе?

Для того чтобы раздать два фрукта, сначала нужно их выбрать. Согласно пункту «бэ» предыдущего вопроса, сделать это можно способами, перепишу их заново:

яблоко и груша;
яблоко и банан;
груша и банан.

Но комбинаций сейчас будет в два раза больше. Рассмотрим, например, первую пару фруктов:
яблоком можно угостить Дашу, а грушей - Наташу;
либо наоборот - груша достанется Даше, а яблоко - Наташе.

И такая перестановка возможна для каждой пары фруктов.

В данном случае работает формула количества размещений :

Она отличается от формулы тем, что учитывает не только количество способов, которым можно выбрать несколько объектов, но и все перестановки объектов в каждой возможной выборке. Так, в рассмотренном примере, важно не только то, что можно просто выбрать, например, грушу и банан, но и то, как они будут распределены (размещены) между Дашей и Наташей.

Постарайтесь хорошо уяснить разницу между перестановками, сочетаниями и размещениями. В простейших случаях можно пересчитать все возможные комбинации вручную, но чаще всего это становится неподъемной задачей, именно поэтому и нужно понимать смысл формул.

Также напоминаю, что сейчас речь идёт о множестве с различными объектами, и если яблоко/грушу/банан заменить на 3 яблока или даже на 3 очень похожих яблока, то в контексте рассмотренной задачи они всё равно будут считаться различными .

Остановимся на каждом виде комбинаций подробнее:

Перестановки

Перестановками называют комбинации, состоящие из одних и тех же различных объектов и отличающиеся только порядком их расположения. Количество всех возможных перестановок выражается формулой

Отличительной особенностью перестановок является то, что в каждой из них участвует ВСЁ множество, то есть, все объектов. Например, дружная семья:

Задача 1

Сколькими способами можно рассадить 5 человек за столом?

Решение : используем формулу количества перестановок:

Ответ : 120 способами

Невероятно, но факт. Обратите внимание, что здесь не имеет значения круглый ли стол, квадратный, или вообще все люди сели на скамейку вдоль одной стены - важно лишь количество объектов и их взаимное расположение. Помимо перестановок людей, часто встречается задача о перестановках различных книг на полке, но это было бы слишком просто даже для чайника:

Задача 2

Сколько четырёхзначных чисел можно составить из четырёх карточек с цифрами 0, 5, 7, 9?

Для того чтобы составить четырёхзначное число нужно задействовать все четыре карточки (цифры на которых различны! ) , и это очень важная предпосылка для применения формулы Очевидно, что, переставляя карточки, мы будем получать различные четырёхзначные числа, … стоп, а всё ли тут в порядке? ;-)

Хорошенько подумайте над задачей! Вообще, это характерная черта комбинаторных и вероятностных задач - в них НУЖНО ДУМАТЬ. И зачастую думать по-житейски, как, например, в разборе вступительного примера с фруктами. Нет, конечно, я не призываю тупо прорабатывать другие разделы математики, однако должен заметить, что те же интегралы можно научиться решать чисто механически.

Решение и ответ в конце урока.

Увеличиваем обороты:

Сочетания

В учебниках обычно даётся лаконичное и не очень понятное определение сочетаний, поэтому, в моих устах формулировка будет не особо рациональной, но, надеюсь, доходчивой:

Сочетаниями называют различные комбинации из объектов, которые выбраны из множества различных объектов, и которые отличаются друг от друга хотя бы одним объектом. Иными словами, отдельно взятое сочетание - это уникальная выборка из элементов, в которой не важен их порядок (расположение). Общее же количество таких уникальных сочетаний рассчитывается по формуле .

Задача 3

В ящике находится 15 деталей. Сколькими способами можно взять 4 детали?

Решение : прежде всего, снова обращаю внимание на то, что по логике условия, детали считаются различными - даже если они на самом деле однотипны и визуально одинаковы (в этом случае их можно, например, пронумеровать) .

В задаче речь идёт о выборке из 4-х деталей, в которой не имеет значения их «дальнейшая судьба» - грубо говоря, «просто выбрали 4 штуки и всё». Таким образом, у нас имеют место сочетания деталей. Считаем их количество:

Здесь, конечно же, не нужно ворочать огромные числа .
В похожей ситуации я советую использовать следующий приём: в знаменателе выбираем наибольший факториал (в данном случае ) и сокращаем на него дробь. Для этого числитель следует представить в виде . Распишу очень подробно:

Способами можно взять 4 детали из ящика.

Ещё раз: что это значит? Это значит, что из набора 15-ти различных деталей можно составить одну тысячу триста шестьдесят пять уникальных сочетания 4-х деталей. То есть, каждая такая комбинация из 4-х деталей будет отличаться от других комбинаций хотя бы одной деталью.

Ответ : 1365 способами

Формуле необходимо уделить самое пристальное внимание, поскольку она является «хитом» комбинаторики. При этом полезно понимать и без всяких вычислений записывать «крайние» значения: . Применительно к разобранной задаче:

Единственным способом можно взять ни одной детали;
способами можно взять 1 деталь (любую из 15-ти);
способами можно взять 14 деталей (при этом какая-то одна из 15-ти останется в ящике);
- единственным способом можно взять все пятнадцать деталей.

Рекомендую внимательно ознакомиться с биномом Ньютона и треугольником Паскаля , по которому, к слову, очень удобно выполнять проверку вычислений при небольших значениях «эн».

Задача 4

Сколькими способами из колоды в 36 карт можно выбрать 3 карты?

Это пример для самостоятельного решения. Чем приятны многие комбинаторные задачи, так это краткостью - главное, разобраться в сути. И суть, бывает, открывается с различных сторон. Разберём весьма поучительный пример:

Задача 4

В шахматном турнире участвует человек и каждый с каждым играет по 1-й партии. Сколько всего партий сыграно в турнире?

Поскольку я сам играю в шахматы и неоднократно принимал участие в круговых турнирах, то сразу же сориентировался по турнирной таблице размером клеток, в которой результат каждой партии учитывается дважды и, кроме того, затушёвываются клетки «главной диагонали» (т.к. участники не играют сами с собой) . Исходя из проведённых рассуждений, общее количество сыгранных партий рассчитывается по формуле . Такое решение полностью корректно (см. соответствующий файл банка готовых решений ) и на долгое время я забыл о нём по принципу «решено, да и ладно».

Однако один из посетителей сайта заметил, что на самом деле здесь можно руководствоваться самыми что ни на есть банальными сочетаниями:
различных пар можно составить из соперников (кто играет белыми, кто чёрными - не важно) .

Эквивалентной является задача о рукопожатиях: в отделе работает мужчин и каждый с каждым здоровается за руку, сколько рукопожатий они совершают? К слову, шахматисты тоже пожимают друг другу руку перед каждой партией.

Ну а вывода тут два:

Во-первых, не всё очевидное - очевидно;

И во-вторых, не бойтесь решать задачи «нестандартно»!

Большое спасибо за ваши письма, они помогают улучшить качество учебных материалов!

Размещения

Или «продвинутые» сочетания. Размещениями называют различные комбинации из объектов, которые выбраны из множества различных объектов, и которые отличаются друг от друга как составом объектов в выборке, так и их порядком . Количество размещений рассчитывается по формуле

Что наша жизнь? Игра:

Задача 5

Боря, Дима и Володя сели играть в «очко». Сколькими способами им можно сдать по одной карте? (колода содержит 36 карт)

Решение : ситуация похожа на Задачу 4, но отличается тем, что здесь важно не только то, какие три карты будут извлечены из колоды, но и то, КАК они будут распределены между игроками. По формуле размещений:

Способами можно раздать 3 карты игрокам.

Есть и другая схема решения, которая, с моей точки зрения, даже понятнее:

способами можно извлечь 3 карты из колоды.

Теперь давайте рассмотрим, какую-нибудь одну из семи тысяч ста сорока комбинаций, например: король пик, 9 червей, 7 червей. Выражаясь комбинаторной терминологией, эти 3 карты можно «переставить» между Борей, Димой и Володей способами:

КП, 9Ч, 7Ч;
КП, 7Ч, 9Ч;
9Ч, КП, 7Ч;
9Ч, 7Ч, КП;
7Ч, КП, 9Ч;
7Ч, 9Ч, КП.

И аналогичный факт справедлив для любого уникального набора из 3-х карт. А таких наборов, не забываем, мы насчитали . Не нужно быть профессором, чтобы понять, что найденное количество сочетаний следует умножить на шесть:

Способами можно сдать по одной карте 3-м игрокам.

По существу, получилась наглядная проверка формулы , окончательный смысл которой мы проясним в следующем параграфе.

Ответ : 42840

Возможно, у вас остался вопрос, а кто же раздавал карты? …Наверное, преподаватель =)
И чтобы никому не было обидно, в следующей задаче примет участие вся студенческая группа:

Задача 6

В студенческой группе 23 человека. Сколькими способами можно выбрать старосту и его заместителя?

Задача о «размещении» должностей в коллективе встречается очень часто и является самым настоящим баяном. Краткое решение и ответ в конце урока.

Рассмотрим задачу подсчета числа выборок из данного множества в общем виде. Пусть имеется некоторое множество N , состоящее из n элементов. Любое подмножество, состоящее из m элементов можно рассматривать без учета их порядка, так и с его учетом, т.е. при изменении порядка переходим к другой m – выборке.

Сформулируем следующие определения:

Размещения без повторения

Размещением без повторения из n элементов по m N , содержащее m различных элементов .

Из определения следует, что два размещения отличаются друг от друга, как элементами, так и их порядком, даже если элементы одинаковы.

Теорема 3 . Число размещений без повторения равно произведению m сомножителей, наибольшим из которых является число n . Записывают:

Перестановки без повторений

Перестановками из n элементов называются различные упорядочения множества N .

Из этого определения следует, что две перестановки отличаются только порядком элементов и их можно рассматривать как частный случай размещений.

Теорема 4 . Число различных перестановок без повторений вычисляется по формуле

Сочетания без повторений

Сочетанием без повторения из n элементов по m называется любое неупорядоченное подмножество множества N , содержащее m различных элементов.

Из определения следует, что два сочетания различаются только элементами, порядок не важен.

Теорема 5 . Число сочетаний без повторений вычисляют по одной из следующих формул:

Пример 1 . В комнате 5 стульев. Сколькими способами можно разместить на них

а) 7 человек; б) 5 человек; в) 3 человека?

Решение: а) Прежде всего надо выбрать 5 человек из 7 для посадки на стулья. Это можно сделать
способом. С каждым выбором конкретной пятерки можно произвести
перестановок местами. Согласно теореме умножения искомое число способов посадки равно.

Замечание: Задачу можно решать, используя только теорему произведения, рассуждая следующим образом: для посадки на 1-й стул имеется 7 вариантов, на 2-й стул-6 вариантов, на 3-й -5, на 4-й -4 и на 5-й -3. Тогда число способов посадки 7 человек на 5 стульев равно . Решения обоими способами согласуются, так как

б) Решение очевидно -

в) - число выборов занимаемых стульев.

- число размещений трех человек на трех выбранных стульях.

Общее число выборов равно .

Не трудно проверить формулы
;

;

Число всех подмножеств множества, состоящего из n элементов.

Размещения с повторением

Размещением с повторением из n элементов по m называется всякое упорядоченное подмножество множества N , состоящее из m элементов так, что любой элемент ожжет входить в это подмножество от 1 до m раз, либо вообще в нем отсутствовать .

Число размещений с повторением обозначают и вычисляют по формуле, представляющей собой следствие из теоремы умножения:

Пример 2 . Пусть дано множество из трех букв N = {a, b, c}. Назовем словом любой набор из букв, входящих в это множество. Найдем количество слов длиной 2, которые можно составить из этих букв:
.

Замечание: Очевидно, размещения с повторением можно рассматривать и при
.

Пример 3 . Требуется из букв {a, b}, составить всевозможные слова длиной 3. Сколькими способами это можно сделать?

Ответ :