Все что вы не знали о первой лампе накаливания. Оценка элементов конструкции и технических характеристик ламп накаливания Температура эксплуатации ламп накаливания

Материалы

В нынешнее время лампа накаливания мощностью 100 Вт имеет такую конструкцию:

  1. Герметичная стеклянная колба грушевидной формы. Из неё частично выкачан воздух или заменён инертным газом. Это сделано для того, чтобы вольфрамовая нить накала не сгорала.
  2. Внутри колбы находится ножка, к которой прикреплены два электрода и несколько держателей из металла (молибдена), которые подпирают вольфрамовую нить, не давая ей провисать и разрываться под собственным весом во время нагрева.
  3. Узкая часть грушевидной колбы закреплена в металлическом корпусе цоколя, имеющего спиральную резьбу для вкручивания в штепсельный патрон. Резьбовая часть является одним контактом, к нему припаян один электрод.
  4. Второй электрод припаян к контакту на донышке цоколя. Он имеет вокруг себя кольцевую изоляцию от резьбового корпуса.

В зависимости от особенных условий эксплуатации некоторые конструктивные элементы могут отсутствовать (например, цоколь или держатели), быть видоизменёнными (например, цоколь), дополнены другими деталями (дополнительная колба). Но такие части, как нить, колба и электроды являются основными частями.

Принцип работы электрической лампы накаливания

Свечение электрической лампы накаливания обусловлено разогревом вольфрамовой нити, через которую проходит электрический ток. Выбор в пользу вольфрама при изготовлении тела свечения был сделан по той причине, что из многих тугоплавких токопроводящих материалов, он наименее дорогой. Но иногда нить накала электроламп изготавливается из других металлов: осмия и рения.
Мощность лампы зависит от того, какого размера нить используется. То есть, зависит от длины и толщины проволоки. Так у лампы накаливания 100 вт нить будет иметь большую длину, чем у лампы накаливания 60вт.

Некоторые особенности и предназначение конструктивных элементов вольфрамовой лампы

Каждая деталь в электролампе имеет своё предназначение и выполняет свои функции:

  1. Колба. Изготавливается из стекла, достаточно дешёвого материала, отвечающего основным требованиям:
    – высокая прозрачность позволяет пропускать световую энергию и по минимуму поглощать её, избегая дополнительного нагревания (этот фактор имеет первостепенное значение для осветительных приборов);
    – жаропрочность даёт возможность выдерживать высокие температуры вследствие нагревания от раскалённой нити (например, в лампе 100 вт колба нагревается до 290°С, 60 Вт — 200°С; 200 Вт — 330°С; 25 Вт - 100°C, 40 Вт - 145°C);
    – твёрдость позволяет выдерживать внешнее давление при откачке воздуха, и не разрушаться при вкручивании.
  2. Наполнение колбы. Сильно разрежённая среда позволяет минимизировать теплопередачу от раскалённой нити к деталям лампы, но усиливает испарение частиц раскалённого тела. Наполнение инертным газом (аргон, ксенон, азот, криптон) исключает сильное испарение вольфрама из спирали, не даёт возгораться нити и минимизирует теплопередачу. Использование галогенов позволяет испарившемуся вольфраму возвращаться обратно в спиральную нить.
  3. Спираль. Изготавливается из вольфрама, выдерживающего 3400°С, рения – 3400°С, осмия — 3000°С. Иногда вместо спиральной нити, в лампе используется лента или тело другой формы. Используемая проволока имеет круглое сечение, для уменьшения габаритов и потерь энергии на теплоотдачу закручивается в двойную или тройную спираль.
  4. Крючки-держатели изготавливаются из молибдена. Они не позволяют сильно провисать увеличившейся от нагрева во время работы спирали. Их количество зависит от длины проволоки, то есть от мощности лампы. Например, у лампы 100 Вт держателей будет 2 – 3 шт. У ламп накаливания мощностью поменьше держатели могут отсутствовать.
  5. Цоколь изготавливается из металла с внешней резьбой. Он выполняет несколько функций:
    — соединяет несколько деталей (колбу, электроды и центральный контакт);
    — служит для крепления в штепсельном патроне с помощью резьбы;
    — является одним контактом.

Существует несколько видов и форм цоколей в зависимости от предназначения осветительного прибора. Есть конструкции, не имеющие цоколя, но с неизменным принципом работы лампы накаливания. Самыми распространенными видами цоколя являются Е27, Е14 и Е40.

Вот некоторые виды цоколей, применяемые для различных типов ламп:

Кроме различных видов цоколя есть и различные виды колб.


Кроме перечисленных конструктивных деталей, лампы накаливания могут иметь и некоторые дополнительные элементы: биметаллические переключатели, отражатели, цоколи без резьбы, различные напыления и др.

История создания и усовершенствования конструкции лампы накаливания

За свою более чем 100 – летнюю историю существования лампы накаливания с вольфрамовой спиралью, принцип работы и основные конструкторские элементы почти не претерпели изменений.
А началось всё в 1840 году, когда была создана лампа, использующая для освещения принцип накаливания платиновой спирали.
1854 год – первая практичная лампа. Применялся сосуд с откачанным воздухом и бамбуковая обугленная нить.
1874 год – используется в качестве тела накала угольный стержень, помещённый в вакуумный сосуд.
1875 год – лампа с несколькими стержнями, которые раскаляются один за другим в случае сгорания предыдущего.
1876 год – использование каолиновой нити накала, которая не требовала откачки воздуха из сосуда.
1878 год – использование угольного волокна в разрежённой кислородной атмосфере. Это позволяло получать яркое освещение.
1880 год – создана лампа с угольным волокном, имеющая время свечения до 40 часов.
1890 год – использование спиральных нитей из тугоплавких металлов (окиси магния, тория, циркония, иттрия, металлического осмия, тантала) и наполнение колб азотом.
1904 год – выпуск ламп с вольфрамовой спиралью.
1909 год – наполнение колб аргоном.
С тех пор прошло более 100 лет. Принцип работы, материалы деталей, наполнение колбы практически не изменились. Эволюции подверглось лишь качество используемых материалов при производстве ламп, технические характеристики и небольшие дополнения.

Преимущества и недостатки ламп накаливания перед другими искусственными источниками света

Для освещения создана . Многие из них изобретены в последние 20 – 30 лет с применением высоких технологий, но обычная лампа накаливания всё равно имеет ряд преимуществ или совокупность характеристик, которые являются более оптимальными при практичном использовании:

  1. Дешевизна при производстве.
  2. Нечувствительность к перепадам напряжения.
  3. Быстрое зажигание.
  4. Отсутствие мерцания. Этот фактор очень актуален при использовании переменного тока частотой 50 гц.
  5. Наличие возможности регулировки яркости источника света.
  6. Постоянный спектр светового излучения, близкий к естественному.
  7. Резкость теней, как при солнечном освещении. Что тоже является привычным для человека.
  8. Возможность эксплуатации в условиях высоких и низких температур.
  9. Возможность производства ламп различной мощности (от нескольких Вт до нескольких кВт) и рассчитанных на различное напряжение (от нескольких Вольт до нескольких кВ).
  10. Несложная утилизация в виду отсутствия токсичных веществ.
  11. Возможность использования любого вида тока с любой полярностью.
  12. Эксплуатация без дополнительных пусковых устройств.
  13. Бесшумность работы.
  14. Не создаёт радиопомех.

Наряду с таким большим перечнем положительных факторов, лампы накаливания обладают и рядом существенных недостатков:

  1. Главный отрицательный фактор – это очень низкий КПД. Он достигает у лампы мощностью 100 Вт лишь 15 %, у прибора 60 Вт этот показатель составляет только 5 %. Одним из способов повышения КПД является повышение температуры накала, но при этом резко уменьшается срок службы вольфрамовой спирали.
  2. Короткий срок службы.
  3. Высокая температура поверхности колбы, которая может достигать у 100-Ваттной лампы 300°С. Это представляет угрозу для жизни и здоровья живых существ, и представляет пожарную опасность.
  4. Чувствительность к встряске и вибрации.
  5. Использование термостойкой арматуры и изоляции токоподводящих проводов.
  6. Высокое энергопотребление (в 5 -10 раз больше номинального) во время запуска.

Несмотря на наличие существенных недостатков, электрическая лампа накаливания является безальтернативным прибором освещения. Низкий КПД компенсируется дешевизной производства. Поэтому в ближайшие 10 – 20 лет она будет вполне востребованным товаром.

Среди всех электроустановочных и электромонтажных изделий осветительная аппаратура имеет наиболее богатый ассортимент. Это происходит потому, что элементы освещения несут в себе не только сугубо технические характеристики, но и элементы дизайна. Возможности современных ламп и светильников, их конструкторское разнообразие настолько велики, что немудрено растеряться. Например, существует целый класс светильников, предназначенных исключительно для гипсокартонных потолков.

Многочисленные виды ламп имеют различную природу света и эксплуатируются в неодинаковых условиях. Чтобы разобраться, какого типа лампа должна стоять в том или ином месте и каковы условия ее подключения, необходимо вкратце изучить основные виды осветительной аппаратуры.

У всех ламп есть одна общая часть: цоколь, при помощи которого они соединяются с проводами освещения. Это касается тех ламп, в которых есть цоколь с резьбой для крепления в патроне. Размеры цоколя и патрона имеют строгую классификацию. Необходимо знать, что в бытовых условиях применяют лампы с 3 видами цоколей: маленьким, средним и большим. На техническом языке это означает Е14, Е27 и Е40. Цоколь, или патрон, Е14 часто называют «миньон» (в gер. с фр. - «маленький»).

Самый распространенным размер - Е27. Е40 используют при уличном освещении. Лампы этой маркировки имеют мощность 300, 500 и 1000 Вт. Цифры в названии обозначают диаметр цоколя в миллиметрах. Помимо цоколей, которые вкручиваются в патрон при помощи резьбы, есть и другие виды. Они штырькового типа и называются G-цоколями. Используются в компактных люминесцентных и галогенных лампах для экономии места. При помощи 2 или 4 штырьков лампа крепится в гнезде светильника. Видов G-цоколей много. Основные из них: G5, G9, 2G10, 2G11, G23 и R7s-7. На светильниках и лампах всегда указывается информация о цоколе. При выборе лампы необходимо сравнивать эти данные.

Мощность лампы - одна из важнейших характеристик. На баллоне или цоколе производитель всегда указывает мощность, от которой зависит светимость лампы . Это не уровень света, который она излучает. В лампах различной природы света мощность имеет совершенно несхожее значение.

Например, энергосберегающая лампа при указанной мощности 5 Вт будет светить не хуже лампы накаливания в 60 Вт. То же касается и люминесцентных ламп . Светимость лампы исчисляется в люменах. Как правило, это не указывается, так что при выборе лампы необходимо ориентироваться на советы продавцов.

Светоотдача обозначает, что на 1 Вт мощности лампа дает столько-то люмен света. Очевидно, что энергосберегающая компактная люминесцентная лампа в 4–9 раз экономичнее, нежели накаливания. Можно легко подсчитать, что стандартная лампа в 60 Вт дает примерно 600 лм, тогда как компактная имеет такое же значение при мощности 10–11 Вт. Настолько же она будет экономичнее по энергопотреблению.

Лампы накаливания

(ЛОН) - самый первый источник электрического света, который появился в домашнем обиходе. Она была изобретена еще в середине 19 в., и хотя с того времени претерпела немало реконструкций, сущность осталась без изменений. Любая лампа накаливания состоит из вакуумного стеклянного баллона, цоколя, на котором располагаются контакты и предохранитель, и нити накаливания, излучающей свет.

Спираль накаливания сделана из вольфрамовых сплавов, которые легко выдерживают рабочую температуру горения +3200 °C. Чтобы нить мгновенно не перегорела, в современных лампах накачивают в баллон какой-нибудь инертный газ, например аргон.

Принцип работы лампы очень прост. При пропускании тока через проводник малого сечения и низкой проводимости часть энергии уходит на разогрев спирали-проводника, отчего тот начинает светиться в видимом свете. Несмотря на столь простое устройство, видов ЛОН существует огромное множество. Они различаются по форме и размерам.

Декоративные лампы (свечи): баллон имеет вытянутую форму, стилизованную под обычную свечу. Как правило, используются в небольших светильниках и бра.

Окрашенные лампы : стекла баллонов имеют различный цвет с декоративными целями.

Зеркальными лампами называют лампы, часть стеклянного баллона которых покрыта отражающим составом для направления света компактным пучком. Такие лампы чаще всего используют в потолочных светильниках, чтобы направлять свет вниз, не освещая потолка.

Лампы местного освещения работают под напряжением 12, 24 и 36 В. Они потребляют немного энергии, но и освещение соответствующее. Применяются в ручных фонарях, аварийном освещении и т. д. ЛОН по-прежнему остаются в первых рядах источника света, несмотря на некоторые недостатки. Их минусом является очень низкий КПД - не более 2–3 % от потребляемой энергии. Все остальное уходит в тепло.

Второй минус заключается в том, что ЛОН небезопасны с противопожарной точки зрения. Например, обычная газета, если ее положить на лампочку в 100 Вт, вспыхивает примерно через 20 мин. Надо ли говорить, что в некоторых местах ЛОН нельзя эксплуатировать, например в маленьких абажурах из пластика или дерева. Кроме того, такие лампы недолговечны. Срок службы ЛОН составляет примерно 500–1000 ч. К числу плюсов можно отнести дешевизну и простоту монтажа. ЛОН не требуют каких-либо дополнительных устройств для работы, подобно люминесцентным.

Галогенные лампы

Галогенные лампы мало чем отличаются от ламп накаливания, принцип работы тот же. Единственная разница между ними - это газовый состав в баллоне. В данных лампах к инертному газу примешивают йод или бром. В результате становится возможным повышение температуры нити накаливания и уменьшение испарения вольфрама.

Именно поэтому галогенные лампы можно делать более компактными, а срок их службы повышается в 2–3 раза. Однако температура нагревания стекла повышается весьма значительно, поэтому галогенные лампы делают из кварцевого материала. Они не терпят загрязнений на колбе. Прикасаться незащищенной рукой к баллону нельзя - лампа перегорит очень быстро.

Линейные галогенные лампы используются в переносных или стационарных прожекторах. В них часто бывают датчики движения. Такие лампы используют в гипсокартонных конструкциях.

Компактные осветительные устройства имеют зеркальное покрытие.

К минусам галогенных ламп можно отнести чувствительность к перепадам напряжения. Если оно «играет», лучше приобрести специальный трансформатор, выравнивающий силу тока.

Люминесцентные лампы

Принцип работы люминесцентных ламп серьезно отличается от ЛОН. Вместо вольфрамовой нити в стеклянной колбе такой лампы горят пары ртути под воздействием электрического тока. Свет газового разряда практически невидим, поскольку излучается в ультрафиолете. Последний заставляет светиться люминофор, которым покрыты стенки трубки. Этот свет мы и видим. Внешне и по способу соединения люминесцентные лампы также сильно отличаются от ЛОН. Вместо резьбового патрона с обеих сторон трубки есть два штырька, закрепляющихся следующим образом: их надо вставить в специальный патрон и повернуть в нем.

Люминесцентные лампы имеют низкую рабочую температуру. К их поверхности можно без опаски прислонять ладонь, поэтому они устанавливаются где угодно. Большая поверхность свечения создает ровный рассеянный свет. Именно поэтому их еще называют лампами дневного света . Кроме того, варьируя состав люминофора, можно изменять цвет светового излучения, делая его более приемлемым для человеческих глаз. По сроку службы люминесцентные лампы превосходят лампы накаливания почти в 10 раз.

Минусом люминесцентных ламп является невозможность прямого подключения к электросети. Нельзя просто накинуть 2 провода на торцы лампы и воткнуть вилку в розетку. Для ее включения используются специальные балласты. Связано это с физической природой свечения ламп. Наряду с электронными балластами используются стартеры, которые как бы поджигают лампу в момент включения. Большинство светильников под люминесцентные лампы оборудованы встроенными механизмами свечения наподобие электронных пускорегулирующих аппаратов (ПРА) или дросселями.

Маркировка люминесцентных ламп не похожа на простые обозначения ЛОН, имеющие только показатель мощности в ваттах.

Для рассматриваемых ламп она следующая:

  • ЛБ - белый свет;
  • ЛД - дневной свет;
  • ЛЕ - естественный свет;
  • ЛХБ - холодный свет;
  • ЛТБ - теплый свет.

Цифры, идущие за буквенной маркировкой, обозначают: первая цифра - степень цветопередачи, вторая и третья - температуру свечения. Чем выше степень цветопередачи, тем более естественно освещение для человеческого глаза. Рассмотрим пример, относящийся к температуре свечения: лампа с маркировкой ЛБ840 означает, что эта температура равна 4000 К, цвет белый, дневной.

Следующие значения расшифровывают маркировку ламп:

  • 2700 К - сверхтеплый белый,
  • 3000 К - теплый белый,
  • 4000 К - естественный белый или белый,
  • более 5000 К - холодный белый (дневной).

В последнее время появление на рынке компактных люминесцентных энергосберегающих ламп произвело настоящую революцию в светотехнике. Были устранены главные недостатки люминесцентных ламп - их громоздкие размеры и невозможность использовать обычные нарезные патроны. ПРА были вмонтированы в ламповый цоколь, а длинная трубка свернулась в компактную спираль.

Теперь разнообразие видов энергосберегающих ламп очень велико. Они различаются не только по своей мощности, но и по форме разрядных трубок. Плюсы такой лампы очевидны: нет нужды устанавливать электронный балласт для запуска, пользуясь специальными светильниками.

Экономичная люминесцентная лампа пришла на смену обычной лампе накаливания. Однако у нее, как и у всех люминесцентных ламп, есть недостатки.

Минусов у люминесцентных ламп несколько:

  • такие лампы плохо работают при низких температурах, а при –10 °C и ниже начинают светить тускло;
  • долгое время запуска - от нескольких секунд до нескольких минут;
  • слышен низкочастотный гул от электронного балласта;
  • не работают вместе со светорегуляторами;
  • сравнительно дорогие;
  • не любят частого включения и выключения;
  • в состав лампы входят вредные ртутные соединения, поэтому она требует специальной утилизации;
  • если использовать в выключателе индикаторы подсветки, данная осветительная аппаратура начинает мерцать.

Как бы ни старались производители, свет люминесцентных ламп пока не очень похож на естественный и режет глаза. Кроме энергосберегающих ламп с ПРА существует множество разновидностей без встроенного электронного балласта. Они имеют совершенно другие виды цоколя.

Принцип свечения дуговой ртутной лампы высокого давления (ДРЛ) - дуговой разряд в парах ртути. Такие лампы обладают высокой светоотдачей - на 1 Вт приходится 50–60 лм. Запускаются при помощи ПРА. Недостатком является спектр свечения - их свет холоден и резок. Лампы ДРЛ чаще всего используются для уличного освещения в светильниках типа «кобра».

Светодиодные лампы

Светодиодные лампы - этот продукт высокой технологии впервые был сконструирован в 1962 г. С той поры светодиодные лампы стали постепенно внедряться на рынок осветительной продукции. Светодиод по принципу действия - это самый обычный полупроводник, у которого часть энергии в переходе p-n сбрасывается в виде фотонов, то есть видимого света. Такие лампы имеют просто потрясающие характеристики.

Они десятикратно превосходят ЛОН по всем показаниям:

  • долговечности,
  • светоотдаче,
  • экономичности,
  • прочности и т. д.

Есть у них лишь одно «но» - это цена. Она приблизительно в 100 раз превосходит цену обычной лампы накаливания. Однако работа над этими необычными источниками света продолжается, и можно ожидать, что вскоре мы будем радоваться изобретению более дешевого, нежели его предшественники, образца.

Примечание! Ввиду необычных физических характеристик светодиодов из них можно изготавливать настоящие композиции, например в виде звездного неба на потолке комнаты. Это безопасно и не требует больших затрат энергии.

В лампе накаливания используется эффект нагревания тела накаливания при протекании через него электрического тока (тепловое действие тока ). Температура тела накаливания повышается после замыкания электрической цепи. Все тела, температура которых превышает температуру абсолютного нуля, излучают электромагнитное тепловое излучение в соответствии с законом Планка . Спектральная плотность мощности излучения (Функция Планка) имеет максимум, длина волны которого на шкале длин волн зависит от температуры. Положение максимума в спектре излучения сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура излучающего тела превышала 570 °C (температура начала красного свечения, видимого человеческим глазом в темноте). Для зрения человека, оптимальный, физиологически самый удобный, спектральный состав видимого света отвечает излучению абсолютно чёрного тела с температурой поверхности фотосферы Солнца 5770 . Однако не известны твердые вещества, способные без разрушения выдержать температуру фотосферы Солнца, поэтому рабочие температуры нитей ламп накаливания лежат в пределах 2000-2800 °C. В телах накаливания современных ламп накаливания применяется тугоплавкий и относительно недорогой вольфрам (температура плавления 3410 °C), рений (температура плавления примерно та же, но выше прочность при пороговых температурах) и очень редко осмий (температура плавления 3045 °C). Поэтому спектр ламп накаливания смещён в красную часть спектра. Только малая доля электромагнитного излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение . Чем меньше температура тела накаливания, тем меньшая доля энергии , подводимой к нагреваемой проволоке, преобразуется в полезное видимое излучение , и тем более «красным» кажется излучение.

Для оценки физиологического качества светильников используется понятие цветовой температуры . При типичных для ламп накаливания температурах 2200-2900 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (< 3500 K) свет более комфортен для человека и меньше подавляет естественную выработку мелатонина , важного для регуляции суточных циклов организма (нарушение его синтеза негативно сказывается на здоровье).

В атмосферном воздухе при высоких температурах вольфрам быстро окисляется в триоксид вольфрама (образуя характерный белый налёт на внутренней поверхности лампы при потере ею герметичности). По этой причине, вольфрамовое тело накала помещают в герметичную колбу, из которой, в процессе изготовления лампы откачивается воздух и заполняется инертным газом - обычно аргоном . На заре индустрии ламп их изготавливали с вакууммированными колбами; в настоящее время только лампы малой мощности (для ламп общего назначения - до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом , аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп уменьшает скорость испарения вольфрамовой нити. Это не только увеличивает срок службы лампы, но и позволяет повысить температуру тела накаливания. Таким образом, световой КПД повышается, а спектр излучения приближается к белому. Внутренняя поверхность колбы газонаполненной лампы медленнее темнеет при распылении материала тела накала в процессе работы, как у вакуумированной лампы.

Все чистые металлы и их многие сплавы (в частности, вольфрам) имеют положительный температурный коэффициент сопротивления , что означает увеличение электрического удельного сопротивления с ростом температуры. Эта особенность автоматически стабилизирует электрическую потребляемую мощность лампы на ограниченном уровне при подключении к (источнику с низким выходным сопротивлением), что позволяет подключать лампы непосредственно к электрическим распределительным сетям без использования ограничивающих ток балластных реактивных или активных двухполюсников , что экономически выгодно отличает их от газоразрядных люминесцентных ламп . Для нити накаливания осветительной лампы типично сопротивление в холодном состоянии в 10 раз меньше, чем в нагретом до рабочих температур.

Для изготовления обычной лампочки требуется как минимум 7 металлов .

Конструкция

Конструкции ламп весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы, могут применяться держатели тела накала различной конструкции. Крючки-держатели тела накала ламп накаливания (в том числе ламп накаливания общего назначения) изготовляются из молибдена . Лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель - звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы - как правило, в ножке. Назначение предохранителя - предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга , которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. В настоящее время отказываются от применения предохранителей из-за их малой эффективности.

Колба

Колба защищает тело накала от воздействия атмосферных газов. Размеры колбы определяются скоростью осаждения материала тела накала.

Газовая среда

Колбы первых ламп были вакуумированы. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа с большой молярной массой. Смеси азота N 2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже - криптон Kr или ксенон Xe (молярные массы : N 2 - 28,0134 /моль ; Ar: 39,948 г/моль; Kr - 83,798 г/моль; Xe - 131,293 г/моль).

Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении через тело накала протекает очень большой ток (в десять - четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу - при нагревании их сопротивление уменьшалось, и свечение медленно нарастало.

Возрастающая характеристика сопротивления нити накала (при увеличении тока сопротивление растёт) позволяет использовать лампу накаливания в качестве примитивного стабилизатора тока . При этом лампа включается в стабилизируемую цепь последовательно, а среднее значение тока выбирается таким, чтобы лампа работала вполнакала.

В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мерцающем режиме.

Цоколь

В США и Канаде используются иные цоколи (это частично обусловлено иным напряжением в сетях - 110 В, поэтому иные размеры цоколей предотвращают случайное ввинчивание европейских ламп, рассчитанных на иное напряжение): Е12 (candelabra), Е17 (intermediate), Е26 (standard или medium), Е39 (mogul) . Также, аналогично Европе, встречаются цоколи без резьбы.

Разновидности

Лампы накаливания делятся на (расположены по порядку возрастания эффективности):

  • Вакуумные (самые простые)
  • Аргоновые (азот-аргоновые)
  • Криптоновые
  • Ксенон-галогенные с отражателем ИК-излучения (так как большая часть излучения лампы приходится на ИК-диапазон, то отражение ИК-излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей)
  • Накаливания с покрытием, преобразующим ИК-излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.

Номенклатура

По функциональному назначению и особенностям конструкции лампы накаливания подразделяют на:

  • лампы общего назначения (до середины 1970-х годов применялся термин «нормально-осветительные лампы»). Самая массовая группа ламп накаливания, предназначенных для целей общего, местного и декоративного освещения. Начиная с 2008 года за счёт принятия рядом государств законодательных мер, направленных на сокращение производства и ограничение применения ламп накаливания с целью энергосбережения , их выпуск стал сокращаться;
  • декоративные лампы , выпускаемые в фигурных колбах. Наиболее массовыми являются свечеобразные колбы диаметром около 35 мм и сферические диаметром около 45 мм;
  • лампы местного освещения , конструктивно аналогичные лампам общего назначения, но рассчитанные на низкое (безопасное) рабочее напряжение - 12, 24 или 36 (42) В. Область применения - ручные (переносные) светильники, а также светильники местного освещения в производственных помещениях (на станках, верстаках и т. п., где возможен случайный бой лампы);
  • иллюминационные лампы , выпускаемые в окрашенных колбах. Назначение - иллюминационные установки различных типов. Как правило, лампы этого вида имеют малую мощность (10-25 Вт). Окрашивание колб обычно производится за счёт нанесения на их внутреннюю поверхность слоя неорганического пигмента. Реже используются лампы с колбами, окрашенными снаружи цветными лаками (цветным цапонлаком), их недостаток - быстрое выцветание пигмента и осыпание лаковой плёнки из-за механических воздействий;
  • зеркальные лампы накаливания имеют колбу специальной формы, часть которой покрыта отражающим слоем (тонкая плёнка термически распылённого алюминия). Назначение зеркализации - пространственное перераспределение светового потока лампы с целью наиболее эффективного его использования в пределах заданного телесного угла. Основное назначение зеркальных ЛН - локализованное местное освещение;
  • сигнальные лампы используются в различных светосигнальных приборах (средствах визуального отображения информации). Это лампы малой мощности, рассчитанные на длительный срок службы. Сегодня вытесняются светодиодами;
  • транспортные лампы - чрезвычайно широкая группа ламп, предназначенных для работы на различных транспортных средствах (автомобилях, мотоциклах и тракторах, самолётах и вертолётах, локомотивах и вагонах железных дорог и метрополитенов, речных и морских судах). Характерные особенности: высокая механическая прочность, вибростойкость, использование специальных цоколей, позволяющих быстро заменять лампы в стеснённых условия и, в то же время, предотвращающих самопроизвольное выпадение ламп из патронов. Рассчитаны на питание от бортовой электрической сети транспортных средств (6-220 В);
  • прожекторные лампы обычно имеют большую мощность (до 10 кВт, ранее выпускались лампы до 50 кВт) и высокую световую отдачу. Используются в световых приборах различного назначения (осветительных и светосигнальных). Спираль накала такой лампы обычно уложена за счёт особой конструкции и подвески в колбе более компактно для лучшей фокусировки;
  • лампы для оптических приборов , к числу которых относятся и выпускавшиеся массово до конца XX в. лампы для кинопроекционной техники, имеют компактно уложенные спирали, многие помещаются в колбы специальной формы. Используются в различных приборах (измерительные приборы, медицинская техника и т. п.);

Специальные лампы

  • коммутаторные лампы - разновидность сигнальных ламп. Они служили индикаторами на коммутаторных панелях. Представляют собой узкие длинные миниатюрные лампы с гладкими параллельными контактами, что позволяет легко их заменять. Выпускались варианты: КМ 6-50, КМ 12-90, КМ 24-35, КМ 24-90, КМ 48-50, КМ 60-50, где первое число означает рабочее напряжение в вольтах, второе - силу тока в миллиамперах;
  • Фотолампа , перекальная лампа - разновидность лампы накаливания, предназначенная для работы в строго нормированном форсированном по напряжению режиме. По сравнению с обычными имеет повышенную световую отдачу (до 30 лм/Вт), малый срок службы (4-8 часов) и высокую цветовую температуру (3300-3400 К, по сравнению с 2700 К). В СССР выпускались фотолампы мощностью 300 и 500 Вт. Как правило, имеют матированную колбу. В настоящее время (XXI век) практически вышли из употребления, благодаря появлению более долговечных устройств сравнимой и более высокой эффективности. В фотолабораториях обычно осуществлялось питание таких ламп в двух режимах:
  • Проекционные лампы - для диа- и кинопроекторов. Имеют повышенную яркость (и соответственно, повышенную температуру нити и уменьшенный срок службы); обычно нить размещают так, чтобы светящаяся область образовала прямоугольник.
  • Двухнитевые лампы . В автомобиле - может быть у лампы переднего света одна нить для дальнего света, другая для ближнего, или, к примеру, одна нить для габаритного огня, другая для стоп-сигнала. Кроме того, такие лампы могут содержать экран, который в режиме ближнего света отсекает лучи, которые могли бы ослеплять встречных водителей. В самолёте посадочно-рулёжная фара имеет основную нить, на которой лампа работает без внешнего охлаждения и дополнительную, включаемую вместе с основной, позволяя получить более мощный свет, но только при внешнем охлаждении - обдуве набегающим потоком воздуха. В звёздах Московского Кремля используются специально сконструированные двухнитевые лампы, обе нити включены параллельно.
  • Лампа-фара . Лампа сложной специальной конструкции, применяемая на подвижных объектах, фигурная колба которой выполнена в виде части корпуса фары с отражателем. Конструктивно содержит в себе нить(и) накала, отражатель, рассеиватель, элементы крепления, клеммы и т. д. Лампы-фары широко применяются в современной автомобильной технике и уже достаточно давно в авиации.
  • Малоинерционная лампа накаливания , лампа накаливания с тонкой нитью - использовалась в системах оптической записи звука методом модуляции яркости источника и в некоторых экспериментальных моделях Фототелеграфа . Благодаря малой толщине и массе нити подача на такую лампу напряжения, модулированного сигналом звукового диапазона частот (до примерно 5 кГц), приводила к изменению яркости в соответствии с мгновенным напряжением сигнала . С начала XXI века не находят применения благодаря наличию намного более долговечных твердотельных излучателей света и намного менее инерционных излучателей других типов.
  • Нагревательные лампы - основной источник тепла в блоках термозакрепления лазерных принтеров и копировальных аппаратов . Лампа цилиндрической формы неподвижно устанавливается внутри вращающегося металлического вала, к которому прижимается бумага с нанесённым тонером . За счёт тепла, передающегося от вала, тонер расплавляется и впрессовывается в структуру бумаги.
  • Лампы специального спектра излучения . Применяются в разнообразной технике.

История изобретения

Перегоревшую лампу, колба которой сохранила целостность, а нить разрушилась лишь в одном месте, можно починить путём встряхиваний и поворотов, таких, чтобы концы нити вновь соединились. При прохождении тока концы нити могут сплавиться и лампа продолжит работу. При этом однако может выйти из строя (расплавиться/обломиться) предохранитель, входящий в состав лампы.

Преимущества и недостатки ламп накаливания

Преимущества

  • низкая цена
  • небольшие размеры
  • невысокая чувствительность к сбоям в питании и скачкам напряжения
  • мгновенное зажигание и перезажигание
  • незаметность мерцания при работе на переменном токе (важно на предприятиях)
  • возможность использования регуляторов яркости
  • приятный и привычный в быту спектр; спектр излучения лампы накаливания определяется исключительно температурой рабочего тела и не зависит ни от каких иных условий, что следует из принципа её работы. Он не зависит от применяемых материалов и их чистоты, стабилен во времени и имеет стопроцентную предсказуемость и повторяемость. Это важно в том числе при больших инсталляциях и в светильниках из сотен ламп: нередко можно увидеть, когда при применении современных люминофорных или светодиодных ламп они имеют разный цветовой оттенок в пределах группы. Это уменьшает эстетическое совершенство инсталляций. При неисправности одной лампы часто приходится заменять всю группу целиком, но даже при установке ламп из одной партии встречается девиация спектра
  • высокий индекс цветопередачи , Ra 100
  • непрерывный спектр излучения
  • резкие тени (как при солнечном освещении) благодаря малому размеру излучающего тела
  • не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату
  • налаженность в массовом производстве
  • возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)
  • отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации
  • отсутствие пускорегулирующей аппаратуры
  • возможность работы на любом роде тока
  • нечувствительность к полярности напряжения
  • чисто активное электрическое сопротивление (единичный коэффициент мощности)
  • отсутствие гудения при работе на переменном токе (ввиду отсутствия электронного балласта, драйвера или преобразователя)
  • при работе не создаёт радиопомехи
  • устойчивость к электромагнитному импульсу
  • нечувствительность к ионизирующей радиации

Недостатки

Производство

Ограничения импорта, закупок и производства

В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу во многих странах введён или планируется к вводу запрет на производство, закупку и импорт ламп накаливания с целью вынуждения замены их на энергосберегающие (компактные люминесцентные , светодиодные , индукционные и др.) лампы.

В России

2 июля 2009 года на заседании в Архангельске президиума Государственного совета по вопросам повышения энергоэффективности Президент Российской Федерации Д. А. Медведев предложил запретить в России продажу ламп накаливания .

23 ноября 2009 года Д. А. Медведев подписал принятый ранее Государственной думой и утверждённый Советом федерации закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» . Согласно документу, с 1 января 2011 года на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более, а также запрещается размещение заказов на поставку ламп накаливания любой мощности для государственных и муниципальных нужд; с 1 января 2013 года может быть введён запрет на электролампы мощностью 75 Вт и более, а с 1 января 2014 года - мощностью 25 Вт и более.

Данное решение является спорным. В поддержку его приводятся очевидные доводы сбережения электроэнергии и подталкивания развития современных технологий. Против - соображение, что экономия на замене ламп накаливания полностью сводится на нет повсеместно распространённым устаревшим и энергонеэффективным промышленным оборудованием, линиями электропередачи, допускающими большие потери энергии, а также относительно высокой стоимостью компактных люминесцентных и светодиодных ламп, малодоступных для беднейшей части населения. Кроме того, в России отсутствует налаженная система сбора и утилизации отработавших люминесцентных ламп, что не было учтено при принятии закона, и в результате чего ртутьсодержащие люминесцентные лампы бесконтрольно выбрасываются. Большинство потребителей не знает о наличии в люминесцентной лампе ртути, так как это не указано на упаковке, а вместо «люминесцентная» написано «энергосберегающая». В условиях низких температур многие «энергосберегающие» лампы оказываются неспособными запуститься. Люминесцентные энергосберегающие лампы неприменимы в прожекторах направленного света, так как светящееся тело в них в десятки раз крупнее нити накаливания, что не даёт возможности узкой фокусировки луча. В силу своей дороговизны «энергосберегающие» лампы чаще становятся объектом кражи из общедоступных мест (например, подъездов жилых домов), такие кражи наносят более весомый материальный ущерб, а в случае вандализма (повреждение люминесцентной лампы из хулиганских побуждений) - возникает опасность загрязнения помещения парами ртути.

Нередко бывает так, что используемое в быту устройство, имеющее большое значение для всего человечества, ничем не напоминает нам о его создателе. А ведь в наших домах зажглась благодаря усилиям конкретных людей. Их заслуга для человечества неоценима - наши дома наполнились светом и теплом. История представленная ниже, познакомит вас с этим великим изобретением и с именами тех, с кем оно связано.

Что касается последних, можно отметить два имени - Александра Лодыгина и Томаса Эдисона. Хотя заслуга русского ученого была очень велика, пальма первенства принадлежит именно американскому изобретателю. Поэтому мы вкратце расскажем о Лодыгине и подробно остановимся на достижениях Эдисона. Именно с их именами связывается история ламп накаливания. Говорят, что на лампочки у Эдисона ушло огромное количество времени. Ему пришлось провести около 2 тысяч опытов, прежде чем на свет появилась знакомая нам всем конструкция.

Изобретение, сделанное Александром Лодыгиным

История ламп накаливания очень похожа на истории других сделанных в России изобретений. Александр Лодыгин, русский ученый, смог заставить угольный стержень светиться в стеклянном сосуде, откуда был откачан воздух. История создания лампы накаливания начинается в 1872 году, когда ему удалось это сделать. Александр получил патент на электрическую угольную лампу накаливания в 1874 году. Немного позже он предложил заменить вольфрамовым угольный стержень. Вольфрамовая деталь и сейчас используется в лампах накаливания.

Заслуга Томаса Эдисона

Однако именно американский изобретатель, смог создать долговечную, надежную и недорогую модель в 1878 году. Кроме того, ему удалось наладить ее производство. В его первых лампах в роли нити накаливания была обугленная стружка, сделанная из японского бамбука. Вольфрамовые нити, привычные нам, появились значительно позже. Они стали использоваться по инициативе Лодыгина, упоминавшегося выше русского инженера. Не будь его, кто знает, как сложилась бы история ламп накаливания дальнейших лет.

Американский менталитет Эдисона

Существенно отличается от русского. У гражданина США Томаса Эдисона в дело шло все. Интересно, что, размышляя о том, как сделать более прочной телеграфную ленту, этот ученый изобрел вощение бумаги. Затем эта бумага использовалась в виде обертки для конфет. Семь столетий западной истории предшествовали изобретению Эдисона, и не столько развитием технической мысли, сколько постепенно формировавшимся у людей активным отношением к жизни. Многие талантливые ученые упорно шли к этому изобретению. История происхождения лампы накаливания связана, в частности, с именем Фарадея. Он создал фундаментальные труды по физике, без опоры на которые вряд ли было бы осуществимо изобретение Эдисона.

Другие изобретения, сделанные Эдисоном

Томас Эдисон появился на свет в 1847 году в Порт-Херон, небольшом американском городке. В самореализации Томаса сыграло роль то, что молодой изобретатель обладал способностью мгновенно находить инвесторов для своих идей, даже самых дерзких. И они были готовы рискнуть немалыми суммами. Например, еще будучи подростком, Эдисон решил печатать газету в поезде во время движения и затем продавать ее пассажирам. А новости для газеты следовало собирать прямо на остановках. Сразу же нашлись люди, которые ссудили деньги на покупку небольшого печатного станка, а также те, которые пустили Эдисона в багажный вагон с этим станком.

Изобретения до Томаса Эдисона делались либо учеными и были побочным продуктом осуществленных ими открытий, либо практиками, которые совершенствовали то, с чем им приходилось работать. Именно Эдисон сделал изобретательство отдельной профессией. У него было множество идей, и практически каждая из них делалась ростком для последующих, которые требовали дальнейшей разработки. Томас в течение всей своей долгой жизни не заботился о своем личном комфорте. Известно, что, когда он посетил Европу, будучи уже в зените славы, то был разочарован ленью и щеголеватостью европейских изобретателей.

Сложно было найти область, в которой Томас не совершил бы прорыв. Подсчитано, что этот ученый ежегодно делал около 40 крупных открытий. В общей сложности Эдисон получил 1092 патента.

Дух американского капитализма толкал вверх Томаса Эдисона. Ему удалось разбогатеть еще в возрасте 22 лет, когда он придумал котировочный "тиккер" для бостонской биржи. Однако самым важным изобретением Эдисона было именно создание лампы накаливания. Томасу удалось с ее помощью электрифицировать всю Америку, а затем и весь мир.

Строительство электростанции и первые потребители электроэнергии

История создания лампы начинается со строительства небольшой электростанции. Ученый соорудил ее у себя в Менло-Парке. Она должна была обслуживать нужды его лаборатории. Однако получаемой энергии оказалось больше, чем было необходимо. Тогда Эдисон начал продавать излишек соседям-фермерам. Вряд ли эти люди понимали, что стали первыми платными потребителями электроэнергии в мире. Эдисон никогда не стремился стать предпринимателем, однако когда он нуждался для своей работы в чем-либо, он открывал небольшое производство в Менло-Парке, впоследствии разраставшееся до больших размеров и шедшее своим путем развития.

История изменения устройства лампы накаливания

Электрическая лампа накаливания представляет собой источник света, где преобразование в световую энергию электрической происходит из-за накаливания тугоплавкого проводника электрическим током. Световая энергия впервые была получена таким способом при пропускании тока сквозь угольный стержень. Этот стержень был помещен в сосуд, из которого предварительно был откачан воздух. Томас Эдисон в 1879 году создал более-менее долговечную конструкцию с использованием угольной нити. Однако имеется довольно длительная история возникновения лампы накаливания в современном виде. В качестве тела накала в 1898-1908 гг. пытались применять разные металлы (тантал, вольфрам, осмий). Вольфрамовую нить, зигзагообразно расположенную, начали использовать с 1909 года. Лампы накаливания начали наполнять в 1912-13 гг. (криптоном и аргоном), а также азотом. В это же время вольфрамовую нить стали делать в виде спирали.

История развития лампы накаливания далее отмечена ее усовершенствованием путем улучшения световой отдачи. Это осуществлялось с помощью повышения температуры тела накала. Срок службы лампы при этом сохранялся. Заполнение ее инертными высокомолекулярными газами с добавлением галогена привело к уменьшению загрязнения колбы частицами вольфрама, распыляющегося внутри нее. Кроме того, это уменьшило скорость его испарения. Применение тела накала в виде биспирали и триспирали привело к сокращению теплопотерь через газ.

Такова история изобретения лампы накаливания. Наверняка вам интересно будет узнать и о том, что представляют собой различные ее разновидности.

Современные разновидности ламп накаливания

Множество разновидностей электрических ламп состоит из определенных однотипных частей. Они различаются формой и размерами. На металлическом или стеклянном штенгеле внутри колбы закреплено тело накала (то есть сделанная из вольфрама спираль) с помощью держателей, выполненных из молибденовой проволоки. К концам вводов прикреплены концы спирали. Для того чтобы создать вакуумноплотное соединение с лопаткой, выполненной из стекла, средняя часть вводов выполняется из молибдена или платинита. Колба лампы во время вакуумной обработки наполняется инертным газом. Затем штенгель заваривается и образуется носик. Лампа для крепления в патроне и защиты носика снабжается цоколем. Он прикрепляется цоколевочной мастикой к колбе.

Внешний вид ламп

Сегодня существует множество накаливания, которые можно разделить по областям применения (для автомобильных фар, общего назначения и др.), по светотехническим свойствам их колбы или по конструктивной форме (декоративные, зеркальные, с рассеивающим покрытием и др.), а также по форме, которую имеет тело накала (с биспиралью, с плоской спиралью и др.). Что касается габаритов, выделяют крупногабаритные, нормальные, малогабаритные, миниатюрные и сверхминиатюрные. Например, к последним относятся лампы, имеющие длину менее 10 мм, диаметр которых не превышает 6 мм. Что касается крупногабаритных, к ним принадлежат такие, длина которых составляет более 175 мм, а диаметр - не менее 80 мм.

Мощность ламп и срок службы

Современные лампы накаливания могут работать при напряжении от долей единицы до нескольких сотен вольт. Их мощность может составлять десятки киловатт. Если увеличить напряжение на 1 %, световой поток повысится на 4 %. Однако при этом срок службы сократится на 15 %. Если включить лампу на короткий срок на напряжение, которое превышает на 15 % номинальное, она будет выведена из строя. Именно поэтому так часто перепады напряжения вызывают перегорание лампочек. От пяти часов до тысячи и более колеблется срок их службы. Например, на короткое время рассчитаны самолетные фарные лампы, а транспортные могут работать очень долго. В последнем случае их следует устанавливать в местах, которые обеспечивают легкость замены. Сегодня световая отдача ламп зависит от напряжения, конструкции, продолжительности горения и мощности. Она составляет около 10-35 лм/Вт.

Лампы накаливания сегодня

Лампы накаливания по своей световой отдаче, безусловно, проигрывают источникам света, работающим от газа (люминесцентная лампа). Тем не менее они проще в эксплуатации. Для ламп накаливания не требуется сложной арматуры или пусковых устройств. По мощности и напряжению для них практически не существует ограничений. В мире сегодня каждый год производится около 10 млрд ламп. А число их разновидностей превышает 2 тысячи.

Светодиодные лампы

История происхождения лампы уже написана, тогда как история развития этого изобретения еще не завершена. Появляются новые разновидности, которые становятся все более популярными. Речь идет в первую очередь о светодиодных лампах (одна из них представлена на фото выше). Они известны также как энергосберегающие. Эти лампы обладают светоотдачей, превышающей более чем в 10 раз светоотдачу ламп накаливания. Однако у них имеется недостаток - источник питания должен быть низковольтным.

Легендарные лампочки Ильича можно назвать классикой жанра, «динозаврами» источников освещения, т.к. патент на их создание был принят в далеком 1879 году. Далее мы рассмотрим основные технические характеристики ламп накаливания, виды, а также плюсы и минусы применения в быту.

Устройство лампы накаливания включает в себя стеклянную колбу, в которой находиться вольфрамовая нить и инертный газ (ксенон, криптон либо аргон). Нить установлена на специальных опорах и электродах, через которые проходит электрический ток (наглядно вы можете увидеть конструкцию на картинке выше). При вкручивании цоколя в патрон, электричество проходит к вольфрамовой нити, которая накаляется и излучает свет. В этом и заключается принцип действия лампочки.

Характеристика

Основные технические характеристики лампы накаливания:

  • диапазон мощностей — от 25 до 150 Вт (для бытового применения) до 1000 Вт;
  • температура накала вольфрамовой нити в пределах 3000 градусов;
  • световая отдача – от 9 до 19 Лм/ 1 Вт (к примеру, световой поток лампы накаливания 40 Вт может варьироваться от 415 до 460 Лм);
  • номинальное напряжение — 220-230 В и 127 В;
  • частота – 50 Гц;
  • размер цоколя – 14 мм (E14), 27 мм (E27) и 40 мм (E40);
  • ресурс работы или по простому срок службы – при нормальном напряжении около 1000 часов (220В) и 2500 часов (127 В);
  • цоколь – резьбовой, штифтовой одно- и двухконтактный.

Технические характеристики бытовых ламп накаливания:



С параметрами разобрались, теперь поговорим о разновидностях.

Разновидности

На сегодняшний день существует широкий ассортимент лампочек, которые разделяются по следующим признакам:

  • форма колбы (шарообразная, цилиндрическая, трубчатая, шароконическая и т.д.);
  • покрытие колбы (прозрачное, зеркальное, матовое);
  • назначение (общее, местное, кварцевогалогенные);
  • наполнитель колбы (вакуум, аргон, ксенон, криптон, галоген и т.д.).

Рассмотрим фото и характеристики наиболее популярных видов ламп накаливания.

Прозрачные наиболее распространенный вариант. Такие изделия самые дешевые и наименее эффективные, т.к. световой поток рассеивается неравномерно. Недостаток прозрачных колб в том, что свет «бьет» по глазам. Зеркальные колбы более эффективные, т.к. покрытие создает направленный световой поток. Такие изделия пользуются популярностью при освещении витрин и торговых залов. Матовые делают освещение более мягким и рассеянным, благодаря чему создаются благоприятные условия для работы и отдыха при включенном свете. Изделия местного освещения работают при напряжении 12-24-38 Вольт, что необходимо для создания безопасных условий труда. Такие источники света могут применяться для освещения смотровой ямы при .

Маркировка

Маркировка ламп накаливания имеет вид: Первая буквенная часть — особенность конструкции и физические свойства изделия (Б — аргоновая биспиральная, В – вакуумная, Г – газополная аргоновая моноспиральная, БК – биспиральная криптоновая, МЛ – в колбе молочного цвета, МТ – матовая колба, О – опаловая колба). Вторая буквенная часть — назначение изделия (Ж – железнодорожная, СМ – самолетная, КМ – коммутаторная, А – автомобильная, ПЖ – прожекторная). Первая цифирная часть – номинальное напряжение и мощность. Вторая цифирная часть – номер доработки. К примеру, маркировка Б235 – 245-60 означает, что изделие биспиральное, работает при напряжении 245 В и имеет мощность 60 Вт.

Достоинства

Главное преимущество ламп накаливания заключаются в наименьшей стоимости изделий, по сравнению с конкурентами (светодиодами, и т.д.). Помимо этого можно выделить еще ряд преимуществ, которые и являются причиной выбора данных источников света:

  • Могут нормально работать при низких температурах, благодаря чему применяются при .
  • При незначительных скачках напряжения изделие не выходит из строя.
  • Работают даже при очень низком напряжении (только вот интенсивность освещения снизится).
  • Разновидность и мощность изделий имеет широкий диапазон, благодаря чему можно выбрать подходящий под определенные условия эксплуатации продукт.
  • Могут нормально функционировать при повышенной влажности.
  • Подключаются к сети без дополнительного оборудования.
  • Превосходят газозарядные источники света по безопасности.